Что такое эковата? Описание, особенности, виды и цена эковаты. Целлюлозный утеплитель Утепление целлюлозой

Изобретение относится к вспененному элементу с включенным в пеноматериал гидрофильным агентом, образованным из целлюлозы, причем вспененный элемент с введенной в него целлюлозой обладает способностью обратимо поглощать влагу, при этом целлюлоза образована структурным типом кристаллической модификации целлюлозы-II, и доля целлюлозы от полной массы пеноматериала выбирается в диапазоне от 0,1 вес.%, в частности, 5 вес.%, и до 10 вес.%, в частности 8,5 вес.% и содержание влаги во вспененном элементе, начиная с исходного значения влажности, соответствующего равновесной влажности относительно первой внешней атмосферы с первыми температурно-влажностными условиями с заданной температурой и относительной влажностью, повышается во время его применения во второй, измененной по сравнению с первой, внешней атмосфере со вторыми температурно-влажностными условиями с более высокой, по сравнению с первыми условиями, температурой и/или более высокой относительной влажностью, и влажность, поглощенная во время применения включенной во вспененный элемент целлюлозой-II, после применения во второй внешней атмосфере снова отдается в первую внешнюю атмосферу через промежуток времени в диапазоне от 1 часа и до 16 часов вплоть до нового достижения исходного значения влажности, соответствующего равновесной влажности относительно первой внешней атмосферы. Технический результат - вспененный элемент с улучшенным влагорегулированием. 2 н. и 12 з.п. ф-лы, 3 табл., 4 ил.

Рисунки к патенту РФ 2435800

Изобретение относится к вспененному элементу с включенным в пеноматериал гидрофильным агентом, который образован из целлюлозы, причем вспененный элемент с введенной целлюлозой имеет способность обратимо поглощать влагу, как это описано в пунктах 1-3 формулы.

В настоящее время пеноматериалы используются или применяются во многих областях повседневной жизни. Во многих этих областях применения пеноматериалы контактируют с телом, чаще всего их разделяют только один или несколько промежуточных слоев ткани. Большинство таких пеноматериалов состоит из синтетических полимеров, таких как полиуретан (ПУ), полистирол (ПС), синтетический каучук и т.д., которые в принципе имеют недостаточную водопоглощающую способность. В частности, при длительном контакте с телом или же при напряженной деятельности, когда выделяется пот, из-за высокого количества невпитывающейся влаги создаются неприятные температуро-влажностные условия для тела. Поэтому для большинства применений требуется делать такие пеноматериалы гидрофильными.

Это, опять же, может достигаться самыми разными способами. Одна возможность состоит в том, как это описано, например, в документе DE 19930526 A, что уже пенную структуру мягкого пенополиуретана делают гидрофильной. Это осуществляют путем взаимодействия по меньшей мере одного полиизоцианата с по меньшей мере одним соединением, содержащим по меньшей мере два активных к изоцианату соединения, в присутствии сульфокислот, которые содержат одну или несколько гидроксильных групп и/или их солей и/или могут быть получены из полиалкиленгликолевых эфиров, инициированных одноатомными спиртами. Такие пеноматериалы применяются, например, в качестве губок для домашнего хозяйства или для гигиенических изделий.

Следующая возможность описана в документе DE 10116757 A1, где гидрофильный алифатический полиметановый пеноматериал с открытыми ячейками, с дополнительным собственным слоем целлюлозных волокон с введенным в него гидрогелем, применяется как аккумулирующее средство.

Из европейского патента EP 0793681 B1 или немецкого перевода DE 69510953 T2 стал известен способ получения мягких пенопластов, в котором используются так называемые суперпоглощающие полимеры (SAP), которые можно назвать также гидрогелями. При этом применяемые SAP предварительно смешиваются с форполимером, что делает этот способ очень простым для производителя пен. Такие SAP можно выбирать из SAP, привитых крахмалами или целлюлозой, с применением, например, акрилонитрила, акриловой кислоты или акриламида в качестве ненасыщенного мономера. Такие SAP продаются, например, фирмой Höchst/Cassella под наименованием SANWET IM7000.

В документе WO 96/31555 A2 описан пеноматериал с ячеистой структурой, причем пеноматериал опять же содержит суперпоглощающие полимеры (SAP). При этом SAP может быть образован из синтетического полимера или также из целлюлозы. Применяемый там пеноматериал используется для того, чтобы поглощать влагу или жидкости и удерживать их в пенной структуре.

Из документа WO 2007/135069 A1 стали известны обувные подошвы с водопоглощающими свойствами. При этом еще перед вспениванием синтетического материала добавляют водопоглощающие полимеры. Такие водопоглощающие полимеры обычно получают полимеризацией водного раствора мономера и факультативно последующим измельчением гидрогеля. Водопоглощающий полимер или образованный из него высушенный гидрогель после его получения предпочтительно размалывают и просеивают, причем здесь применяются частицы просеянного, высушенного гидрогеля с размерами предпочтительно ниже 1000 мкм и предпочтительно выше 10 мкм. Кроме того, дополнительно к гидрогелям перед вспениванием могут добавляться или вмешиваться наполнители, причем здесь в качестве органических наполнителей могут применяться, например, сажа, меламин, канифоль, а также целлюлозные волокна, полиамидные, полиакрилонитрильные, полиуретановые, полиэфирные волокна на основе ароматических и/или алифатических сложных эфиров дикарбоновых кислот и углеродные волокна. При этом для получения вспененного элемента все вещества вводятся в реакционную смесь отдельно друг от друга.

Известные в уровне техники пеноматериалы по своим свойствам выполняются так, чтобы они сохраняли и удерживали поглощенную ими влагу в течение длительного времени. Как это следует из WO 2007/135069 A1, впитанная влага, или поглощенная вода, снова полностью возвращается к исходному состоянию, что касается влажности окружающей атмосферы, только по истечении 24 часов.

Эта скорость отдачи является слишком медленной для нормального способа использования, как, например, матрасов, обувных подошв или сидений в транспортных средствах, которые непрерывно используются несколько часов подряд в день и поэтому имеют существенно меньше 24 часов времени для отдачи впитанной влаги. При этом можно говорить о так называемой равновесной влажности, причем это есть значение влажности, при котором пена находится в равновесии с влажностью, содержащейся в окружающей атмосфере.

Поэтому в основе настоящего изобретения стоит задача создать вспененный элемент, который для улучшения его влагорегулирования в отношении скорости отдачи влаги содержит материал, который, кроме того, прост в переработке при получении пены.

Эта задача изобретения решена отличительными признаками пункта 1 формулы. Преимущество, даваемое признаками пункта 1, состоит в том, что добавлением целлюлозы к пенной структуре достигается достаточно высокая способность впитывать влагу или жидкость, но при этом впитанная влажность или жидкость по окончании наполнения в результате пользования как можно быстрее отдается снова в окружающую атмосферу, так что снова достигается равновесная влажность. Таким образом, благодаря применению целлюлозы-II избегают материалов с волокнистой структурой, вследствие чего улучшается сыпучесть и предотвращается взаимное зацепление волокон. Длительность отдачи зависит от цели применения или назначения вспененного элемента, и равновесная влажность после использования, например как матраса, снова достигается самое позднее через 16 часов. В случае обувных подошв или стелек эта длительность должна устанавливаться еще меньшей. Поэтому в качестве гидрофильного агента добавляется определенное количество целлюлозы, которое вводится или вмешивается прямо при образовании пены в один из образующих пену компонентов. Благодаря целлюлозе достигается не только достаточная накопительная емкость, но и повторная быстрая отдача поглощенной влаги в окружающую среду. Благодаря добавленной фракции целлюлозы достигается то, что способность поглощать и отдавать влагу вспененным элементом можно легко подстраивать к самым разным случаям применения.

Независимо от этого, задача изобретения может быть решена также отличительными признаками пункта 2 формулы. Преимущество, даваемое признаками пункта 2, состоит в том, что добавлением целлюлозы в пенную структуру создается достаточно высокая способность поглощения влаги или жидкости, однако после наполнения в результате использования поглощенная влажность или жидкость как можно быстрее отдается снова в окружающую атмосферу, так что снова достигается равновесная влажность. В результате особой комбинации добавления целлюлозы-II и достигнутых при этом значений плотности получается очень высокое паро- или влагопоглощение. Благодаря высокому значению промежуточного хранения влаги или воды, которая поглощается во время использования вспененного элемента, можно гарантировать пользователю приятное чувство сухости при использовании. Таким образом, благодаря этому тело не контактирует напрямую с влагой.

Независимо от этого, задача изобретения может быть решена также отличительными признаками пункта 3. Преимущество, даваемое отличительными признаками пункта 3, состоит в том, что в результате добавления целлюлозы в пенную структуру создается достаточно высокая способность поглощать влагу или жидкость, однако после наполнения в результате использования поглощенная влага или жидкость как можно быстрее отдается снова в окружающую атмосферу, так что снова достигается равновесная влажность. В результате особой комбинации добавления целлюлозы-II и достигнутых при этом значений плотности получается очень высокое паро- или влагопоглощение.

Благодаря этому можно при хорошем удобстве в применении достичь быстрой отдачи влаги, впитанной вспененным элементом. Таким образом, и после высокого поглощения влаги уже через относительно короткий промежуток времени возможно повторное использование, и при этом возможно снова иметь в распоряжении равно сухой вспененный элемент.

Выгодна также следующая форма осуществления по п. 4, так как в зависимости от полученной пенной структуры пенопласта длину волокна можно подобрать так, чтобы можно было достичь оптимального переноса влаги как для быстрого поглощения, так и для быстрой отдачи после использования.

Далее, выгодно усовершенствование по п.5, поскольку так можно достичь еще более тонкого распределения целлюлозных частиц внутри пенной структуры и тем самым просто подстроить вспененный элемент к самым разным целям применения.

В результате усовершенствования по п.6 можно улучшить сыпучесть частиц. Благодаря не вполне гладкой и неправильной структуре поверхности это ведет к повышенной удельной поверхности, которая способствует отличным адсорбционным свойствам целлюлозных частиц.

Согласно другому варианту осуществления по п.7 создается возможность использовать такие частицы также при так называемом углекислотном вспенивании без того, чтобы при этом закупоривались мелкие отверстия в пластине форсунки.

Выгодно также усовершенствование по п.8, поскольку таким образом избегают сферической формы и создается нерегулярная поверхность без волокнистой бахромчатости или фибрилл. Тем самым избегают пылевидных образований, и достигается благоприятное распределение внутри пенной структуры.

В результате усовершенствования по п.9 можно обогащать целлюлозу или соединять ее с по меньшей мере одной дополнительной добавкой непосредственно при получении целлюлозы, и, таким образом, для введения в компонент реакции нужно учитывать только одну-единственную добавку.

Выгодно также усовершенствование по п.10, поскольку таким образом можно получить вспененный элемент, который может найти применение в самых разных областях применения.

Согласно усовершенствованию, какое описано в пункте 11, достигается еще лучший перенос влаги внутрь вспененного элемента.

Далее, использование вспененного элемента выгодно также для самых разных целей назначения, поскольку таким образом не только можно улучшить удобство в носке при использовании, но и существенно быстрее выполняется дальнейший цикл сушки. Это выгодно особенно для самых разных сидений, матрасов, а также в тех формах применения, при которых телом отдается влага.

Для лучшего понимания изобретения оно будет подробнее объяснено на следующих чертежах.

Показано, каждый раз в упрощенном виде:

фиг.1 - первый график, на котором для различных образцов с разным местом отбора проб показано влагопоглощение между двумя заданными температурно-влажностными условиями;

фиг.2 - второй график, который показывает различное влагопоглощение обычной пеной и пеной с введенными частицами целлюлозы;

фиг.3 - третий график, который показывает разную отдачу влаги обычной пеной и пеной с введенными частицами целлюлозы;

фиг.4 - гистограмма, которая показывает поглощение водяного пара обычным пенопластом и, в сравнении с этим, пенопластом с введенными частицами целлюлозы.

Для начала следует отметить, что в разных описанных формах осуществления одинаковые детали снабжены одинаковыми позициями для ссылок или одинаковыми обозначениями конструктивных элементов, причем раскрытия, содержащиеся во всем описании, могут быть перенесены по смыслу на одинаковые детали с одинаковыми позициями или одинаковыми обозначениями конструктивных элементов. Равным образом, и указания на место, выбранное в описании, как например сверху, снизу, сбоку и т.д., относятся к непосредственно описываемой, а также показанной фигуре и должны при изменении места переноситься по смыслу на новое место. Кроме того, отдельные признаки или комбинации признаков из показанных и описанных разных примеров осуществления могут представлять собой самостоятельные изобретательские решения или решения согласно изобретению.

Все указания на диапазон значений в настоящем описании следует понимать так, что они охватывают все без исключения подобласти диапазона, например если указано "от 1 до 10", следует понимать, что охватываются все поддиапазоны, исходя из нижней границы 1 и верхней границы 10, т.е. все подобласти, начинающиеся с нижней границы 1 или больше и заканчивающиеся верхней границей 10 или меньше, например от 1 до 1,7, или от 3,2 до 8,1 или от 5,5 до 10.

Сначала подробнее остановимся на вводимом в пенопласт, в частности в образованный из него вспененный элемент, гидрофильном агенте, который образован, например, из целлюлозы. Таким образом, вспененный элемент образован из пенопласта, а также из включенного в него гидрофильного агента. Пенопласт, со своей стороны, может быть образован из соответствующей смеси компонентов, способных вспениваться друг с другом, которые предпочтительно находятся в жидкой форме, как это уже достаточно известно.

Как уже было написано во введении, в WO 2007/135069 A1 помимо водопоглощающих полимеров в качестве дополнительного наполнителя добавляют целлюлозные волокна. Они должны в известных случаях улучшать механические свойства пеноматериала. Однако здесь было установлено, что добавление волокнистых добавок затрудняет переработку вспениваемой исходной смеси, так как изменяется ее текучесть. Например, волокнистые целлюлозные частицы, которые перед вспениванием вмешиваются, в частности, в полиольный компонент, сделали бы его более вязкотекучим, что затрудняет или даже делает невозможным смешение с другими компонентами, а именно с изоцианатом, в дозирующей головке установки по производству пены. Равным образом, может также стать более трудным распространение реакционной массы в результате растекания по конвейерной ленте установки по производству пены. Кроме того, волокнистые целлюлозные частицы могут также усиленно задерживаться как отложения в трубопроводах для подвода реакционной смеси.

Поэтому добавление волокнистых добавок возможно только в определенных границах. Чем меньше количественная доля волокнистых добавок, в частности коротких отрезков целлюлозных волокон, тем меньше также водопоглощающая способность, когда они добавляются к пеноматериалу. Так, уже при добавлении незначительного количества порошка из волокон целлюлозы следует ожидать повышения вязкости, в частности, полиольного компонента. Правда, такие смеси в принципе перерабатываются, но при обработке следует принимать во внимание изменившуюся вязкость.

Как известно, целлюлозу или произведенные из нее нити, волокна или порошки по большей части получают путем переработки и измельчения лигнина или также древесины и/или однолетних растений.

В зависимости от производственных затрат получают порошки различного качества (чистота, размер и т.п.). Общим для всех этих порошков является то, что они имеют волокнистую структуру, так как натуральная целлюлоза любого порядка величины имеет выраженную тенденцию образовывать такие волокнистые структуры. Также и МКЦ (микрокристаллическая целлюлоза), которая описывается как сферическая, состоит тем не менее из фрагментов кристаллических волокон.

В зависимости от микроструктуры различают разные структурные типы целлюлозы, в частности целлюлозу-I и целлюлозу-II. Разница между этими двумя структурными типами детально описана в специальной литературе и, кроме того, может быть установлена рентгенографически.

Преобладающая часть целлюлозного порошка состоит из целлюлозы-I. Получение и применение порошков целлюлозы-I защищено большим числом правовых норм. Ими защищены, например, также многие технические детали измельчения. Порошки целлюлозы-I имеют волокнистую природу, что не очень благоприятно для ряда применений или даже мешает им. Так, волокнистые порошки часто приводят к сцеплению волокон. С этим связана также ограниченная сыпучесть.

Целлюлозные порошки на основе целлюлозы-II в настоящее время практически отсутствуют на рынке. Такие целлюлозные порошки с подобной структурой можно получить или из раствора (главным образом вискоза), или измельчением продуктов из целлюлозы-II. Таким продуктом был бы, например, целлофан. Кроме того, такие тонкие порошки с размером зерна 10 мкм и ниже также доступны лишь в очень незначительных количествах.

Получение сферических, нефибриллярных целлюлозных частиц с размером в диапазоне от 1 мкм до 400 мкм можно осуществить, например, из раствора недериватизированной целлюлозы в смеси органического вещества и воды. При этом раствор в свободном течении охлаждают до его температуры затвердевания и затем застывший целлюлозный раствор измельчают. После этого растворитель вымывают и измельченные промытые частицы сушат. Дальнейшее измельчение проводится чаще всего с помощью мельницы.

Особенно выгодно, если уже в подготовленный раствор целлюлозы перед его охлаждением и последующим застыванием вводят по меньшей мере отдельные из называемых далее добавок. Эта добавка может быть выбрана из группы, содержащей пигменты, неорганические вещества, как например оксиды титана, в частности нестехиометрический диоксид титана, сульфат бария, ионообменник, полиэтилен, полипропилен, полиэфир, сажу, цеолиты, активированный уголь, полимерный суперабсорбер или огнезащитное средство. В таком случае они присутствуют в получаемых позднее целлюлозных частицах. При этом добавление может производиться в любой момент получения раствора, но в любом случае перед застыванием. При этом можно вводить от 1 вес.% до 200 вес.% добавок, в расчете на количество целлюлозы. Оказалось, что эти добавки при вымывании не удаляются, а остаются в целлюлозных частицах, также по существу сохраняют свою функцию. Так, например, при подмешивании активированного угля можно установить, что его активная поверхность, которую можно измерить, например, методом БЭТ, также полностью сохраняется в готовых частицах. Кроме того, в результате этого полностью доступны не только добавки, находящиеся на поверхности целлюлозных частиц, но и находящиеся внутри частиц. Это следует считать особенно экономически выгодным, так как в подготовленный раствор целлюлозы нужно добавлять лишь незначительное количество добавок.

Это имеет то преимущество, что в реакционную смесь для получения вспененного элемента добавляют только целлюлозные частицы с уже содержащимися в них функциональными добавками. При известном до сих пор раздельном добавлении всех добавок по отдельности в реакционную смесь здесь для расчета параметров пенообразования нужно учитывать только тип добавки. Благодаря этому можно избежать неконтролируемых колебаний свойств многих из этих различных добавок.

Итак, этим образом действий можно получить целлюлозный порошок, который состоит из частиц, имеющих структуру целлюлозы-II. Целлюлозный порошок имеет размер частиц в диапазоне с нижней границей 1 мкм и с верхней границей 400 мкм, при среднем размере частиц ×50 с нижней границей 4 мкм и с верхней границей 250 мкм, при унимодальном распределении частиц по размеру. Далее, целлюлозный порошок или частицы имеют приблизительно сферическую форму с дискретной поверхностью, причем степень кристалличности, определенная согласно методу Рамана, лежит в диапазоне с нижней границей 15% и с верхней границей 45%. Кроме того, частицы имеют удельную поверхность (адсорбция N 2 , БЭТ) с нижней границей 0,2 м 2 /г и с верхней границей 8 м 2 /г при насыпной плотности с нижней границей 250 г/л и верхней границей 750 г/л.

Структура целлюлозы-II достигается путем растворения и повторного осаждения целлюлозы, и настоящие частицы отличаются, в частности, от частиц, полученных из целлюлозы без этапа растворения.

На размер частиц в описанном выше диапазоне (нижняя граница 1 мкм и верхняя граница 400 мкм, распределение частиц, которое характеризуется значением ×50 с нижней границей 4 мкм, в частности 50 мкм, и с верхней границей 250 мкм, в частности 100 мкм) влияет, естественно, режим процесса измельчения путем размола. Тем не менее, в результате особого способа получения посредством застывания свободно текучего раствора целлюлозы и благодаря обусловленным этим механическим свойствам затвердевшей целлюлозной массы, этого распределения частиц можно достичь особенно легко. Раствор целлюлозы, застывающий под действием срезывающих нагрузок, имел бы при равных условиях измельчения другие, но, в частности, фибриллярные характеристики.

Форма применяемых частиц является приблизительно сферической. Эти частицы имеют соотношение осей (1:d) от 1 и до 2,5. Они имеют неправильную поверхность, однако в микроскоп не видно никакой волокноподобной бахромчатости или фибрилл. Таким образом, речь никоим образом не идет о сферах с гладкой поверхностью. Однако для рассматриваемых приложений такая форма была бы и не особенно благоприятной.

Также и насыпная плотность описываемых здесь целлюлозных порошков, которая лежит между нижней границей 250 г/л и верхней границей 750 г/л, заметно выше, чем плотность сопоставимых фибриллярных частиц, соответствующих уровню техники. Такая насыпная плотность имеет существенные технологические преимущества, так как она выражает также компактность описываемых здесь целлюлозных порошком и тем самым, наряду с прочим, лучшую сыпучесть, смешиваемость в различных средах и не являющуюся проблемой пригодность для хранения.

Резюмируя, еще раз подчеркнем, что частицы, полученные из целлюлозного порошка, благодаря своей сферической структуре имеют улучшенную сыпучесть и почти не обнаруживают структурновязкого поведения. Определение характеристик частиц посредством широко распространенных в промышленности приборов для определения гранулометрического размера благодаря сферической форме также является более простым и более содержательным. Не вполне гладкая и нерегулярная структура поверхности приводит к повышенной удельной поверхности, которая способствует еще лучшим адсорбционным свойствам порошка.

Независимо от этого было бы также возможно смешивать чистый целлюлозный порошок или образованные из него частицы с другими целлюлозными частицами, которые дополнительно содержали бы введенные добавки в количестве с нижней границей 1 вес.% и с верхней границей 200 вес.%, в расчете на количество целлюлозы. Отдельные из этих добавок снова могут выбираться из группы, содержащей пигменты, неорганические вещества, как например оксиды титана, в частности подстехиометрический диоксид титана, сульфат бария, ионообменник, полиэтилен, полипропилен, полиэфир, активированный уголь, полимерный суперабсорбер и огнезащитное средство.

В зависимости от применяемого способа вспенивания для получения пеноматериалов особенно выгодными показали себя, в частности при углекислотном вспенивании, сферические целлюлозные частицы по сравнению с известными волокнистыми целлюлозными частицами. При этом углекислотное вспенивание может проводиться, например, по способу Novaflex-Cardio или подобным способом, причем здесь применяются, в частности, мелкие отверстия в пластинах форсунки. Крупные и волокнистые частицы могли бы сразу же забить отверстия форсунки и создавать другие проблемы. Поэтому как раз при этом способе вспенивания особенно выгодна высокая степень дисперсности сферических целлюлозных частиц.

Теперь вспененный элемент согласно изобретению, соответственно способ получения вспененного элемента будут подробнее пояснены на нескольких примерах. Их следует рассматривать как возможные формы осуществления изобретения, причем изобретение никоим образом не ограничено объемом этих примеров.

Данные по влажности в вес.% относятся к массе или весу всего вспененного элемента (пенопласт, целлюлозные частицы и вода или влага).

Пример 1

Получаемый вспененный элемент может быть образован из пенопласта, как например мягкий пенополиуретан, причем здесь опять же могут найти применение самые разные возможности получения и способы. Такие пены чаще всего имеют структуру пены с открытыми ячейками. Это можно осуществить, например, на установке по производству пены "QFM" фирмы Hennecke, причем пеноматериал создается способом дозировки при высоком давлении в непрерывном процессе. Все необходимые компоненты точно дозируются посредством управляемого насоса с использованием компьютера и смешиваются по принципу мешалки. Один из этих компонентов в настоящем случае является полиолом, который был разбавлен описанными ранее целлюлозными частицами. Из-за добавления целлюлозных частиц в компонент реакции полиол необходимы дополнительно различные корректировки рецептуры, например, воды, катализаторов, стабилизаторов, а также TDI, чтобы по существу нейтрализовать влияние добавленного целлюлозного порошка на получение и достигаемые в последующем физические величины.

Была получена одна возможная согласно изобретению пена с 7,5 вес.% сферических целлюлозных частиц. Для этого сначала был получен сферический целлюлозный порошок, который позднее добавляли в один из компонентов реакции для получения пеноматериала. При этом количественная доля целлюлозы в расчете на полную массу пеноматериала, в частности пенопласта, может лежать в диапазоне с нижней границей 0,1 вес.%, в частности 5 вес.%, и верхней границей 10 вес.%, в частности 8,5 вес.%.

Пример 2 (сравнительный пример)

Для сравнения с примером 1 на этот раз из пенопласта получали вспененный элемент, который был получен без добавления целлюлозного порошка или целлюлозных частиц. Причем это может быть стандартная пена, HR-пена или вискозная пена, каждая из которых была получена по известной рецептуре и вспенена.

Сначала попытались установить, равномерно ли распределены по высоте добавленные целлюлозные частицы во всех слоях полученного вспененного элемента. Это проводили так, чтобы посредством водопоглощения пеноматериалом при нормальных условиях (20°C и 55% отн. вл.), а также при других стандартизованных температурно-влажностных условиях (23°C и 93% отн. вл.) измерить так называемую равновесную влажность. Для этого с трех разных высот пеноблока, полученного в примере 1, а также в примере 2, отбирались образцы одинакового размера и на каждом измерялось водопоглощение в обоих описанных ранее стандартизованных температурно-влажностных условиях. При этом 1,0 м означает верхний слой пеноблока, 0,5 м - средний слой и 0,0 м - нижний слой пеноматериала для отбора образцов из пенопласта с добавленными целлюлозными частицами. Полная высота блока составляла около 1 м. В качестве сравнения служил не содержащий целлюлозы пенопласт из примера 2.

Как видно из приведенных численных значений, пена, соединенная с целлюлозными частицами, как в нормальных условиях, так и в других стандартизованных температурно-влажностных условиях с равновесной влажностью тела, поглощает существенно больше влаги по сравнения с пеноматериалами, не содержащими целлюлозы. Разное место отбора проб (сверху, с середины, снизу) также показывает относительно хорошее соответствие результатов измерения, из чего можно сделать вывод о равномерном распределении целлюлозных частиц в полученном вспененном элементе.

Следующая таблица 2 показывает механические свойства обоих пеноматериалов согласно примеру 1 и примеру 2. Легко увидеть, что тип пеноматериала с включенными целлюлозными частицами имеет сравнимые механические свойства с пеноматериалом без добавления целлюлозных частиц. Это говорит о беспроблемных технологических свойствах компонентов реакции, в частности, когда в них добавлены сферические целлюлозные частицы.

Таблица 2
Тип пены
A A B B
Доля порошка (целлюлозные частицы) 0% 10% 0% 7,50%
Объемный вес 33,0 кг/м 3 33,3 кг/м 3 38,5 кг/м 3 43,8 кг/м 3
Напряжение при сжатии 40% 3,5 кПа 2,3 кПа 2,7 кПа 3,0 кПа
Эластичность 48% 36% 55% 50%
Прочность на разрыв 140 кПа 100 кПа 115 кПа 106 кПа
Удлинение 190% 160% 220% 190%
6% 50% 6% 9%

Вспененный элемент без добавленных целлюлозных частиц должен для обоих указанных типов пены иметь следующие номинальные значения:

Тип пены
A B
Объемный вес 33,0 кг/м 3 38,5 кг/м 3
Напряжение при сжатии 40% 3,4 кПа 2,7 кПа
Эластичность >44% >45%
Прочность на разрыв >100 кПа >100 кПа
Удлинение >150% >150%
Остаточная деформация при сжатии во влажном состоянии (22 ч/70% давл./50°C/95% отн. вл.) <15% <15%

Средний объемный вес или плотность всего вспененного элемента лежат при этом в диапазоне с нижней границей 30 кг/м³ и с верхней границей 45 кг/м³.

На фиг.1 показана влажность пены (в процентах) для однотипных образов, но взятых из разных мест отбора из целого вспененного элемента, как это уже было описано ранее. При этом влажность пены в [%] отложена по ординате. Доля добавленного целлюлозного порошка или целлюлозных частиц составляет в этом примере 10 вес.%, а целлюлозные частицы опять же представляют собой вышеописанные сферические целлюлозные частицы. Эти отдельные разные отборы проб с и без добавления отложены по абсциссе.

Показанные кружками точки измерения влажности пены отдельных образцов представляют собой исходные значения, а точки измерения, изображенные квадратами, те же образцы, но через день после поглощения влаги. Более низкие исходные значения определены при описанных выше нормальных условиях, а другие нанесенные значения представляют собой влагопоглощение тех же образцов через 24 часа в других стандартизованных температурно-влажностных условиях (23°C и 93% отн. вл.). Сокращение отн. вл. означает относительную влажность воздуха, которая указана в %.

На фиг.2 показано изменение влагопоглощения в течение 48 часов, причем значения времени (t) отложены по абсциссе в [ч]. При этом исходное состояние образцов снова соответствует определенным выше нормальным условиям с 20°C и 55% отн. вл. Другие стандартизованные температурно-влажностные условия с 23°C и 93% отн. вл. должны показывать условия при пользовании, или климат тела, чтобы таким образом можно было установить промежуток времени для увеличения влажности пены в вес.%. Значения влажности пены отложены по ординате в [%].

Так, первая линия 1 на графике с изображенными кружками точками измерения показывает вспененный элемент с заданным размером образца согласно примеру 2 без добавления целлюлозных частиц или целлюлозного порошка.

Вторая линия 2 на графике с изображенными квадратами точками измерения показывает влажность пены элемента, в который было добавлено 7,5 вес.% целлюлозных частиц или целлюлозного порошка. Под целлюлозными частицами опять подразумеваются вышеописанные сферические целлюлозные частицы.

Ход влагопоглощения в течение 48 часов показывает, что равновесная влажность тела у "пены" в условиях "климата тела" достигается уже через короткое время. Так, отсюда можно понять, что пеноматериал с введенными целлюлозными частицами в течение 3 часов может поглотить вдвое больше влаги, чем пеноматериал согласно примеру 2 без добавления целлюлозных частиц.

Измеренные значения влагопоглощения были получены в результате выдерживания образцов пеноматериала объемом примерно 10 см³ в эксикаторе с регулируемой влажностью воздуха (пересыщенный раствор KNO 3 и 93% отн. вл.) после того, как образцы были высушены. Через определенные промежутки времени отдельные образцы вынимали из эксикатора и измеряли увеличение веса (=водопоглощение). Колебания влагопоглощения объясняются манипуляциями с образцами, а также небольшой неоднородностью образцов.

На фиг.3 показаны характеристики сушки вспененного элемента с введенными целлюлозными частицами согласно примеру 1 в сравнении с пеноматериалом из примера 2 без таких целлюлозных частиц. Для сравнения оба образца сначала выдерживали 24 часа в условиях "климата тела". Это снова означает 23°C и относительную влажность 93%. Значения влажности пены снова отложены по ординате в [%], а время (t) в [мин] отложено по абсциссе. Приведенные процентные значения влажности пены представляют собой весовые проценты в расчете на массу или вес всего вспененного элемента (пенопласт, целлюлозные частицы и вода или влажность).

Точки измерения, показанные кружками, снова относятся к вспененному элементу согласно примеру 2 без добавления целлюлозных частиц, причем на графике была нанесена соответствующая линия 3, показывающая отдачу влаги. Точки измерения, которые показаны квадратами, были получены на вспененном элементе с введенными целлюлозными частицами. Соответствующая следующая линия 4 на графике также показывает быструю отдачу влаги. Доля целлюлозных частиц снова составляла 7,5% вес.

Здесь ясно, что равновесная влажность 2% снова достигается через примерно 10 минут. Это значительно быстрее, чем у пеноматериала согласно уровню техники, у которого отдача сравнимого количества воды длится несколько часов.

Если теперь вспененный элемент с включенными целлюлозными частицами из кристаллической модификации целлюлозы-II выдержать 24 часа в условиях "климата тела" и затем привести в "нормальные условия", то в условиях "климата тела" он сначала поглощает влаги более 5 вес.%, и в течение периода времени 2 мин после приведения в "нормальные условия" влагосодержание снижается по меньшей мере на два (2) вес.%.

На фиг.4 показана гистограмма поглощения водяного пара "Fi" согласно Hohenstein, выраженная в [г/м 2 ], причем эти значения отложены по ординате.

Время, за которое произошло поглощение водяного пара при переходе от определенных выше нормальных условий (20°C и 55% отн. вл.) в также описанные выше стандартизованные температурно-влажностные условия (23°C и 93% отн. вл.) (условия применения или климат тела), для обоих определенных измеренных значений составило 3 (три) часа. Под образцами для испытаний всегда имеют в виду уже описанную ранее пену типа "B". Так, первый столбик 5 на гистограмме показывает тип пены "B" без добавления целлюлозы или целлюлозных частиц. Измеренное значение составляет здесь примерно 4,8 г/м 2 . Образец пены с включенной целлюлозой, напротив, имеет более высокое значение, примерно 10,4 г/м 2 , которое представлено на гистограмме другим столбиком 6. Таким образом, это другое значение превышает значение 5 г/м 2 по Hohenstein.

Вспененный элемент образован из пенопласта, причем в качестве предпочтительного пеноматериала применяется пенополиуретан. Как выше разъяснялось на отдельных графиках, для определения влагопоглощения исходят из так называемой равновесной влажности, которая показывает "нормальные условия" и имеет при 20°C относительную влажность 55%. Для моделирования использования были определены другие стандартизованные температурно-влажностные условия, которые имеют при 23°C относительную влажность 93%. Эти другие стандартизованные температурно-влажностные условия должны, например, иллюстрировать внесение влаги при пользовании из-за выделения пота телом живого организма, в частности человека. Для этого целлюлоза, включенная во вспененный элемент, должна после использования снова отдавать влагу, поглощенную при использовании, в течение времени в диапазоне с нижней границей 1 час и верхней границей 16 часов, и, таким образом, весь вспененный элемент должен принимать равновесную влажность относительно окружающей атмосферы. Это означает, что по окончании пользования целлюлоза очень быстро отдает запасенную в ней влагу в окружающую атмосферу и тем самым вызывается высыхание вспененного элемента.

Как уже упоминалось во введении, о равновесной влажности говорят тогда, когда вспененный элемент подвергается действию вышеописанных внешних атмосферных условий настолько долго, пока влагосодержание элемента (влажность пены) не придет в равновесие с влажностью, содержащейся во внешней атмосфере. После достижения равновесной влажности больше не происходит взаимного обмена влагой между вспененным элементом и окружающей элемент внешней атмосферой.

Так, вышеописанный метод испытаний может быть осуществлен, например, так, чтобы вспененный элемент выдерживать в первой внешней атмосфере с первыми температурно-влажностными условиями с заданной температурой и относительной влажностью воздуха, например 20°C и 55% отн. вл., до тех пор, пока не будет достигнута равновесная влажность с этой внешней атмосферой, и затем этот же вспененный элемент внести во вторую, измененную по сравнению с первой, или в другую внешнюю атмосферу. Эта вторая внешняя атмосфера имеет вторые температурно-влажностные условия с более высокой, по сравнению с первыми условиями, температурой и/или более высокой относительной влажностью воздуха, как например 23°C и 93% отн. вл. При этом влагосодержание пены повышается, причем влага поглощается находящейся в пеноматериале целлюлозой. Затем этот же вспененный элемент снова вносят в первую внешнюю атмосферу, причем тогда через заранее заданный промежуток времени, от 1 часа до 16 часов, снова достигается исходное значение влажности пены, соответствующее равновесной влажности относительно первой внешней атмосферы. Таким образом, за этот промежуток времени влага, впитанная ранее во второй внешней атмосфере, снова отдается целлюлозой во внешнюю атмосферу, и тем самым влажность снижается.

Приведенное здесь нижнее значение 1 час зависит от количества впитанной жидкости или влаги и может также лежать существенно ниже и составлять также всего несколько минут.

Независимо от описанных выше сферических целлюлозных частиц, возможно также, чтобы целлюлоза была образована в виде отрезков волокон с длиной волокна с нижней границей 0,1 мм и верхней границей 5 мм. Равным образом, было бы также возможно, чтобы целлюлоза была образована в виде измельченных волокон с размером частиц с нижней границей 50 мкм и верхней границей 0,5 мм.

Получаемый пеноматериал в зависимости от приложения имеет разные характеристики пеноматериала, которые отличаются самыми разными физическими свойствами.

Напряжение при 40%-ном сжатии может иметь нижнюю границу 1,0 кПа и верхнюю границу 10,0 кПа. Эластичность при испытании с падающим шариком может иметь значение с нижней границей 5% и с верхней границей 70%. Этот метод испытания проводится согласно стандарту EN ISO 8307 и при этом устанавливает высоту возврата и связанную с ней эластичность по отскоку.

Если под полученным вспененным элементом имеется в виду пеноматериал из полиуретана, в частности мягкий пенопласт, то он может быть получен как на основе TDI, так и на основе MDI. Но могут использоваться также и другие пеноматериалы, как например пенополиэтилен, пенополистирол, пенополикарбонат, вспененный ПВХ, пенополимид, пеносиликон, вспененный ПММА (полиметилметакрилат), пенорезина, которые образуют пенный скелет, внутрь которого может быть введена целлюлоза. В таком случае, в зависимости от выбранного пеноматериала, можно говорить о пенопласте или же о пенорезине, как например пенорезине из латекса. При этом высокое влагопоглощение получается независимо от исходной системы, а также от того, каким способом получен пеноматериал, так как способность обратимо поглощать влагу достигается введением или включением целлюлозы. Предпочтительно используются типы пенопласта с открытыми ячейками, которые делают возможным беспрепятственный воздухообмен с внешней атмосферой. Равным образом существенно равномерное распределение добавленной в пенную структуру целлюлозы, как это уже было описано при проводимых ранее экспериментах. Если никакой пенной структуры с открытыми ячейками не может быть, то ее можно создать путем известной целенаправленной дополнительной обработки.

Если в качестве исходного материала используется полиол как один из реакционных компонентов, тогда целлюлоза может добавляться в него перед вспениванием. Это добавление может проводиться вмешиванием или диспергированием целлюлозы способами, известными в данной области. В качестве полиола действуют спирты, которые необходимы для соответствующего типа пеноматериала и которые вводятся в рецептуру в необходимом количестве. Однако при составлении рецептуры следует учитывать также влагосодержание целлюлозных частиц.

Вспененный элемент может служить для создания отдельных синтетических изделий, причем синтетические изделия выбраны из группы, включающей матрасы, мебельную обивку и подушки.

Примеры осуществления показывают возможные варианты реализации вспененного элемента с включенным в пенопласт гидрофильным агентом, который образован из целлюлозы, причем в этом месте следует отметить, что изобретение не ограничено этими частными показанными вариантами реализации, но, напротив, возможны также различные комбинации отдельных вариантов реализации друг с другом, и эти возможности изменения на основе указаний о технологических действиях посредством настоящего изобретение лежат в сфере знаний специалистов, занятых в этой технической области. Таким образом, все мыслимые варианты реализации, которые возможны в результате комбинации отдельных деталей проиллюстрированных и описанных вариантов осуществления, подпадают в сферу защиты.

Задача, лежащая в основе самостоятельных изобретательских решений, может быть взята из описания.

Список позиций для ссылок

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Вспененный элемент с включенным в пеноматериал гидрофильным агентом, образованным из целлюлозы, причем вспененный элемент с введенной в него целлюлозой обладает способностью обратимо поглощать влагу, отличающийся тем, что целлюлоза образована структурным типом кристаллической модификации целлюлозы-II, и доля целлюлозы от полной массы пеноматериала выбирается в диапазоне от 0,1 вес.%, в частности 5 вес.%, и до 10 вес.%, в частности 8,5 вес.%, и содержание влаги во вспененном элементе, начиная с исходного значения влажности, соответствующего равновесной влажности относительно первой внешней атмосферы с первыми температурно-влажностными условиями с заданной температурой и относительной влажностью, повышается во время его применения во второй, измененной по сравнению с первой, внешней атмосфере со вторыми температурно-влажностными условиями с более высокой, по сравнению с первыми условиями, температурой и/или более высокой относительной влажностью, и влажность, поглощенная во время применения включенной во вспененный элемент целлюлозой-II, после применения во второй внешней атмосфере снова отдается в первую внешнюю атмосферу через промежуток времени в диапазоне от 1 ч и до 16 ч вплоть до нового достижения исходного значения влажности, соответствующего равновесной влажности относительно первой внешней атмосфере.

2. Вспененный элемент по п.1, отличающийся тем, что вспененный элемент имеет плотность от 30 кг/м 3 и до 45 кг/м 3 и поглощение водяного пара - показатель Fi по Hohenstein - больше 5 г/м 2 .

3. Вспененный элемент по п.1, отличающийся тем, что вспененный элемент имеет объемный вес от 30 кг/м 3 и до 45 кг/м 3 , и содержание влаги во вспененном элементе, которое больше 5%, исходя из второй внешней атмосферы со вторыми температурно-климатическими условиями, после воздействия первой внешней атмосферы с первыми температурно-климатическими условиями (20°С и относительная влажность 55%) в течение 2 мин снижается по меньшей мере на 2%.

4. Вспененный элемент по одному из предыдущих пунктов, отличающийся тем, что целлюлоза-II находится в виде отрезков волокон с длиной волокна от 0,1 мм и до 5 мм.

5. Вспененный элемент по одному из пп.1, 2 или 3, отличающийся тем, что целлюлоза-II находится в виде измельченных волокон с размером частиц от 50 мкм и до 0,5 мм.

6. Вспененный элемент по п.1, отличающийся тем, что целлюлоза-II образована приблизительно сферическими целлюлозными частицами с дискретной поверхностью.

7. Вспененный элемент по п.2, отличающийся тем, что целлюлоза-II образована приблизительно сферическими целлюлозными частицами с дискретной поверхностью.

8. Вспененный элемент по п.3, отличающийся тем, что целлюлоза-II образована приблизительно сферическими целлюлозными частицами с дискретной поверхностью.

9. Вспененный элемент по одному из пп.6, 7 или 8, отличающийся тем, что приблизительно сферические целлюлозные частицы имеют размер от 1 мкм и до 400 мкм.

10. Вспененный элемент по одному из пп.6, 7 или 8, отличающийся тем, что приблизительно сферические целлюлозные частицы имеют отношение осей (1:d) от 1 и до 2,5.

11. Вспененный элемент по одному из пп.1, 2 или 3, отличающийся тем, что целлюлоза дополнительно содержит по меньшей мере одну из добавок из группы, содержащей пигменты, неорганические вещества, как оксид титана, нестехиометрический оксид титана, сульфат бария, ионообменник, полиэтилен, полипропилен, полиэфир, сажа, цеолиты, активированный уголь, полимерный суперабсорбер или огнезащитное средство.

12. Вспененный элемент по одному из пп.1, 2 или 3, отличающийся тем, что пеноматериал выбран из группы пенополиуретана (вспененный ПУ), пенополиэтилена, пенополистирола, пенополикарбоната, вспененного ПВХ, пенополиимида, пеносиликона, вспененного ПММА (полиметилметакрилата), пенорезины.

13. Вспененный элемент по одному из пп.1, 2 или 3, отличающийся тем, что пеноматериал имеет структуру пены с открытыми ячейками.

14. Применение вспененного элемента по одному из пп.1-13 для образования синтетических изделий, причем синтетические изделия выбраны из группы, содержащей матрасы, мебельную обивку, подушки.

Утеплять жилой дом нужно обязательно по многим причинам, и один из современных теплоизоляционных материалов, удобный в работе, эффективный и долговечный – целлюлозный утеплитель на основе эковаты. Эковата состоит из 81% вторичной целлюлозы (проще говоря – макулатуры), 12% борной кислоты, и 7% бора. В небольших пропорциях добавляется лигнин для улучшения адгезии поверхностей. Экологичность обеспечивается применением именно этих нетоксичных и негорючих веществ. Массу утеплителя задувают (надувают) на (под) поверхность стен, потолка, пола при помощи компрессорных установок, поэтому материал так и называется – задувной утеплитель.

Характеристики и особенности эковаты

Эковата – материал негорючий, но при высоких температурах может тлеть, не создавая открытого пламени. Материал не гниет и не болеет плесенью, отлично задерживает внешние шумы, не пропускает тепло.

  1. Коэффициент теплопроводимости – 0,037-0,042 Вт/(м K);
  2. После намокания и высыхания свойства утеплителя полностью восстанавливаются;
  3. Плотность материала – 30-65 кг/м 3 ;
  4. Согласно ГОСТ 30244, ГОСТ 30402, DIN 4102, ГОСТ 12.1.044, ДСТУ Б В.2.7-38-95 группа горючести – Г2 В2, Д2, РП-1, что означает: умеренно горючая, умеренно воспламеняемая, умеренно дымообразующая, с нулевым распространением пламени по поверхности;
  5. Воздухопроницаемость 80-120 10-6 м 3 /мс Pa;
  6. Паропроницаемость эковаты – 0,3 мг/(мч Па);
  7. Адсорбция за 72 часа – 16%;
  8. pH – 7,8-8,3.

Достоинства и недостатки задувной эковаты

Задувной целлюлозный утеплитель по составу может быть базальтовым, стекловолоконным и целлюлозным. Базальтовая минвата производится из камня базальтовых пород, и в нее не добавляют формальдегиды. Стекловата – это результат измельчения теплоизоляционных плит, целлюлозный утеплитель делается из макулатуры. Во все типы теплоизоляции добавляют антипирены и антисептики.

Достоинства:

  1. Маленькая теплопроводность и легкий вес;
  2. Высокая влагонепроницаемость и паропроницаемость;
  3. Пожаробезопасность и негорючесть;
  4. Длительный срок службы;
  5. Легкий монтаж.

Недостатки:

  1. Для работы потребуется компрессорное оборудование;
  2. На поверхности из гипсокартона эковату нужно наносить в два слоя во избежание вспучивания поверхности;
  3. Необходимость гидроизоляции поверхности;
  4. Дороговизна использования при маленьких объемах утепления.

Расчет слоя эковаты

Отправные данные, которые вам понадобятся:

  1. Строительный материал стен здания;
  2. Среднегодовое тепловое сопротивление в регионе (справочная информация);
  3. Сколько в доме наружных дверей и окон;
  4. Дополнительные утечки тепла;
  5. Материал теплоизоляции и коэффициент теплопередачи.

Формула для расчета значения градусо-суток отопительного периода в регионе:

ГСОП = (Т 1 – Т 2) x Z, где:

  1. Т 1 – оптимальная температура в жилье (18-22 0 С);
  2. Т 2 – среднегодовая температура на улице;
  3. Z – количество суток отопительного сезона.

После вычисления этого регионального параметра можно приступать к уточнению толщины слоя теплоизоляции на поверхностях жилого дома. будет зависеть и от стройматериала стен, потолка или пола – для кирпичных, бетонных, шлакоблочных или деревянных поверхностей результаты будут отличаться.

Как работать с задувной ватой

Наносится целлюлозная вата двумя способами – влажно-клеевым (мокрым) или сухим:

  1. «Мокрый» способ – напыляют эковату вместе с клеевым раствором, который состоит из клея и специальной дисперсной присадки. Нанесенный слой обрезают в требуемый размер и сушат. Это – визуальный способ, пир котором можно контролировать заполнение пустоты теплоизоляцией. Мокрый метод плох тем, что клей не должен замерзать, поэтому работы проводятся при уличной температуре не ниже +5 0 С, а сушиться такой пласт будет не менее трех суток. Кроме того, при реализации этой технологии в помещении должна быть установлена вентиляция, чтобы можно было избавляться от излишков влаги. Но результат будет качественным: такая теплоизоляция не пропускает ни влагу, ни тепло.
  2. «Сухой» способ: утеплитель задувной напыляется на предварительно покрытую крафт-картоном поверхность в сухом виде, как он идет в упаковках. При помощи дополнительного покрытия создается ограниченное пространство, в котором будет находиться вата целлюлозная сухая. Крепят крафт-картон степлером или скотчем, вату задувают компрессором, в домашних условиях можно применять пылесос. Только перед задуванием материал разрыхляют строительным миксером, как показано на рисунке:

Физическая реализация задувания утеплителя делится на две возможности:

  1. Ручное задувание: предварительное рыхление утеплителя с последующей задувкой изоляции на поверхность или в замкнутое пространство. Такой слой теплоизоляции будет иметь невысокие показатели по удержанию тепла и шумов, поэтому набивать эковату следует максимально плотно, а, чтобы добиться более высоких показателей, делать это нужно на маленькой площади. Такие условия можно найти только в индивидуальном строительстве и ремонте помещений – для больших площадей этот способ не подходит;
  2. Выдувное оборудование: метод применим для любых площадей и объемом, предварительно материал разрыхляется механическим способом. Компрессорная установка с высокой скоростью воздушного потока подает утеплитель на поверхность или в замкнутое пространство, пир этом высокое давление в трубах обеспечивает равномерное распределение эковаты по всей утепляемой поверхности. Преимущество: нет стыков и швов, не нужно готовить каркас и демонтировать его после работы по сравнению с «мокрым» способом задувания.

Выдувное компрессорное оборудование имеет следующее устройство:

  1. Передвижная платформа с редуктором (чтобы увеличивать скорость подачи рыхлой минваты), гофрированным воздуховодом большого диаметра и двигателем. Оборудование обычно устанавливается на автомобиль или трактор;
  2. В качестве двигателя используют низкоточные устройства с малым коэффициентом шумов и минимальным пылеобразованием;
  3. Захват утеплителя производится через специальный шлюз, выталкивание – через наливной шланг. Подача ваты дозируется автоматизированной заслонкой;
  4. Механизм для разрыхления эковаты, загрузочная камера с воронкой, пульт управления и выключатель экстренной остановки.

Сделать своими руками механизм для задувания разрыхленной ваты несложно. Для этого понадобится:

  1. Садовый пылесос;
  2. Пластиковый резервуар для предварительно разрыхленного утеплителя;
  3. Гофрированный шланга требуемой длины, но не меньше 8-10 м, Ø 60-70 см;
  4. Электродрель со строительным миксером (можно использовать шуруповерт или перфоратор), скотч;
  5. Эковата.

В пластиковой емкости объемом не менее 50-100 литров вату разрыхляют миксером, затем в емкость опускают шланг, подсоединенный к пылесосу (для герметичности соединения используют обычный скотч), второй конец шланга засовывают в задуваемое пространство до дна (если это замкнутое пространство), или задувают вату в пределах обозначенного каркаса. Для рыхления утеплителя отлично подойдет обычная двухсотлитровая металлическая бочка. По мере заполнения пространства (это будет слышно по звуку пылесоса) шланг понемногу поднимают. После задувания теплоизоляции все пространство и щели заполняются материалом без щелей и стыков, образуя монолитный теплозащитный барьер.

Основное преимущество, которое получает владелец частного дома или коттеджа – это дешевизна процесса и высокая скорость монтажа с качественным и долговечным утеплением. Например, закрыть плоскую крышу одноэтажного дома таким способом можно всего за 2-3 часа пир наличии всего оборудования и подготовленных материалов. Время работы, применяемое оборудование и способы укладки могут меняться в зависимости от особенностей конкретной кровли и условий работы. Другие рулонные и плитные утеплители, например, пенопласт или минвата, для утепления больших площадей в частном секторе малоэффективны в сравнении с выдувным способом нанесения эковаты.

Промышленность предлагает все новые и новые материалы для теплоизоляции жилья. Зачастую новинка оказывается лишь хорошо забытым старым средством. Утверждение применимо и к такому утеплителю, как эковата.

Эковата представляет собой рыхлый термоизолятор из целлюлозы серого цвета следующего состава:

  • Не менее 81% макулатурного вторсырья.
  • До 12% антисептиков и фунгицидов (борная кислота, сульфат или фосфат аммония) – обеспечивают защиту от плесени, грибков, грызунов и насекомых.
  • Не менее 7% ингибиторов огня – создают эффект самозатухания, увеличивают предел огнестойкости до +232 °С.

Производство утеплителя эковаты занимает около 5 минут. Начинается процесс с доставки макулатуры. Сырье засыпается на конвейерную ленту, посредством которой бумага попадает в первичный миксер. Он разделяет листы, освобождает от скрепок с помощью встроенного магнита. После этого вторсырье измельчается миксером на лоскуты шириной 5 см. На этом этапе добавляются антисептические и антипиреновые средства. Затем полуфабрикат поступает в производитель волокон, который измельчает его на фрагменты размером до 4 мм. Добавляется еще немного буры, после чего утеплитель готов.

Особенности и свойства

Эковата применяется в частном домостроительстве для:

  • фасадной теплоизоляции под вентилируемую отделку;
  • межкомнатных перегородок, полов, чердачных и мансардных помещений под финишное или листовое покрытие чернового типа (ГКЛ, ГВЛ, ЦСП, ОСП, ДСП, ДВП, фанера);
  • кровельной термоизоляции.

Технические характеристики эковаты в сравнении с материалом из минеральной ваты впечатляют:

Наименование параметра Эковата Минвата
Теплопроводность, Вт/мК 0,032-0,041 0,033-0,048
Сжимаемость до 25% до 60%
Паропроницаемость, мг/(м.ч.Па) не менее 0,3 0,3
Влажность по массе до 1% до 0,5%
Водопоглощение по объему до 1% до 2%
Группа горючести материала Г1-Г2 НГ-Г1
Плотность, кг./куб. м. 30-75 25-165
Температурный режим от -60 до + 230 °С. от -60 до + 700 °С.
Звукопоглощение при толщине 50 мм до 60 Дб до 48 Дб
Усадка до 20% до 7%

Стоимость целлюлозного утеплителя в среднем составляет 30 руб./кв. м. Согласно исследованиям, показатели эффективность утепления каркасного дома на 38% выше, чем аналогичные данные по минвате. По отзывам утепление дома эковатой позволяет сократить затраты на обогрев жилья до 30%. Кроме того, данный материал обладает следующими достоинствами:

  • Высокий показатель сбережения энергии.
  • «Дышит», требует только ветрозащиты снаружи, изредка – пароизоляции изнутри.
  • Заполняет все щели, выемки, труднодоступные места, образуя единую, бесшовную поверхность.
  • Гигиеничный. Уровень выделения формальдегида и фенола не превышает предельно допустимые нормы, что соответствует классу эмиссии Е1.
  • Технологичный монтаж в любое время года, особенно это касается сухого способа нанесения.

Эковата содержит лигнин – древесное связующее, которое при увлажнении придает материалу клейкость. Именно это свойство позволяет ложиться на поверхность ровным слоем без зазоров. Иногда для улучшения адгезионных свойств добавляют специальные составы, за счет которых также повышается плотность и энергосберегающие свойства утеплителя.

Какие есть недостатки у эковаты?

У целлюлозного утеплителя следующие минусы:

  • Во время влажного способа напыления нужно защищать лаком или краской все металлические элементы (крепежи, провода, трубы), иначе начнется коррозия, ведь срок сушки такого утеплителя – около 2 месяцев.
  • Поскольку в РФ на эковату не существуют нормативные документы, регламентирующие ее состав, содержание различных веществ (СНиП, ГОСТ), вся продукция выпускается по ТУ. Это значит, что качество и характеристики материала зависят от честности производителя. Встречающиеся негативные отзывы об утеплителе эковате подтверждают это.
  • Высокий процент усадки. Со временем оседает и начинает выветриваться через щели и трещины в покрытии, поэтому нужно тщательно герметизировать дефекты покрытия после монтажа.
  • Нельзя использовать материал под стяжку. Это мягкий утеплитель, нуждающийся в свободном пространстве.
  • Действительная стоимость. Для стен требуемая плотность составляет в среднем 60 кг/м3. Кубометр теплоизолятора – это 4 упаковки по 15 кг. Таким образом, цена эковаты начинается от 1600 рублей. По сравнению с минеральным утеплителем (от 1300 рублей) выходит дороговато. Для ручного монтажа на плоских основаниях цена выходит более низкой – не более 900 руб/куб. м. при плотности покрытия 35 кг/куб. м.

Недостатки эковаты существенны, но их наличие зависит, прежде всего, от фирмы-производителя. Некоторые заменяют борную кислоту на аммонийные сульфаты, что ухудшает биостойкость. Перед тем, как купить утеплитель эковату, следует потребовать у продавца санитарно-гигиенический и пожарный сертификаты. Также нужно проверить вес упаковки, сравнив со схожей продукцией.


Отсутствие маркировки на упаковке и документов на продукцию, а также продажа эковаты по необычно низкой цене должны насторожить покупателя – возможно, под видом утеплителя для стен продают измельченную целлюлозу без каких-либо присадок, обеспечивающих био- и огнестойкость. Чтобы купить эковату хорошего качества в Москве, придется потрудиться и посетить множество магазинов города и Подмосковья. Лучше заплатить дороже, но приобрести добротный материал, который прослужит не один год.

Как выполняется монтаж эковаты

Утепление дома проводится 3 способами:

1. Сухой метод. Суть его в том, что эковата наносится пневмоустановкой на вертикальные, горизонтальные и наклонные поверхности (полые стены, перекрытия, кровля) без предварительного увлажнения, в том числе и через отверстия в финишном покрытии. Перед началом монтажа на основание крепится пароизоляция, на которую монтируется каркас (алюминиевый или деревянный). При использовании утеплителя в качестве наружного – ветрозащита. Эковата задувается с небольшим запасом, так как материал в любом случае подвержен усадке. Главное преимущество этого метода – всесезонность.

При работе с целлюлозной ватой нужно применять защитные средства (очки-маска, респиратор). Монтаж заключается в том, что человек вручную распушает и плотно выкладывает ее в промежутки обрешетки между черновым и чистовым покрытием.

2. Влажное напыление. Применяется для открытых поверхностей, смачивается водой и через профессиональное выдувное оборудование напыляется на основание. Применяется большей частью для наружного и внутреннего утепления стен, потолков, мансард.

3. Влажно-клеевое нанесение эковаты заключается в том, что помимо воды используется состав, повышающий уровень адгезии утеплителя к основанию. Используется для наклонных поверхностей (скатная кровля, своды, арки) При автоматизированном монтаже следует учитывать тот факт, что техника позволяет регулировать плотность выдуваемого материала. Чем меньше коэффициент, тем выше вероятность сильной усадки утеплителя в течение 3-5 месяцев. Особенно это касается вертикального покрытия.

Отрицательные отзывы чаще всего связаны с нарушением технологии монтажа и недобросовестностью производителей:

«3 месяца назад решился на утепление стен дома эковатой. За это время обнаружил следующее:

1. Неожиданно завелись муравьи, аж в 3 местах. Продавцы и монтажники в один голос заявляли, что посторонней живности в эковате не заводится. Хотя через месяц они исчезли. Мыши не появлялись.

2. Долго мучились от обилия пыли – частицы эковаты проходили через крохотные щели между досками в стенах и листами ОСП. Изначально наша ошибка – не позаботились о ветрозащите и паробарьере. Сейчас обработали стыки шпатлевкой, но это, скорее всего, ненадолго.

3. Самое неожиданное – эковата дала очень большую усадку. За три месяца – не меньше 30 см. Хотя все производители и продавцы утверждают, что материал не оседает. Поискал, что говорят об этом другие покупатели, оказалось, нужно следить за работниками, чтобы правильную плотность выдавали при монтаже. Иначе усадка неизбежна.

4. Перед монтажом эковата долго лежала на улице без упаковки, в том числе под дождем. Практически не намокла, только верхний тонкий слой стал как пленка».

Константин Барков, Москва.

«Купил 2 недели назад «Эковата плюс» для утепления стен и кровли. Позарился на цену и близость к дому. Хотя сосед предупреждал, что это материал плохой, но решил попробовать. Оказалось, что качество просто отвратительное – видны куски картона, газет, хоть читай. Волокна друг за друга во время монтажа не цепляются, добавки сыпались, приходилось сильно утрамбовывать. В итоге вышел большой расход. Да и упаковка оказалась с секретом – не 15, а 13 кг. Так что стоимость вышла даже дороже. Экологичность, биостойкость и горючесть утеплителя под вопросом».

Денис Куров, Мытищи.

«Семь лет назад утеплили жилую мансарду эковатой. За все время никаких грызунов, насекомых, посторонних запахов. До этого стояла минеральная вата – выбросили, потому что в ней мыши гнездились только так».

Лилия Гнездова, Воронеж

Эковата Ecowool, Isofloc,Isofiber, Steico и проч. конкурирует с изделиями отечественного производства – «Юнизол» и «Эковата».

О том, что собой представляет этот материал, каковы его характеристики, плюсы и минусы, пойдет речь в сегодняшней статье.

Что это за материал?

Эковата представляет собой рыхлый термоизоляционный материал, имеющий серый цвет и выполненный на основе целлюлозы. В состав материала входит:

  • макулатурное вторсырье (порядка 81 процента);
  • огневые ингибиторы (около 7 процентов), которые формируют эффект самозатухания и повышают показатель огнестойкости эковаты до 232 градусов;
  • фунгициды и антисептические вещества (порядка 12 процентов), защищающие материал от воздействия грибков, плесени, мышей и проч.

Также стоит заметить, что процедура изготовления данного утепляющего материала занимает всего пять минут. Вначале на место производства доставляется макулатура. Ее засыпают на специальный конвейер, посредством которого бумага поступает на так называемый первичный миксер. Там материал делится, очищается от металлических элементов (таких, как скрепки) при помощи вмонтированного магнита. Далее сырье измельчается посредством того же миксера на небольшие лоскутки (ширина – около 50 миллиметров), добавляются антипирены и антисептики.

Затем сырье подается в еще одно устройство – изготовитель волокон, измельчающий его на более тонкие куски (размеры – порядка 0,4 сантиметра). В конце добавляется небольшое количество буры. Все, целлюлозный утепляющий материал готов к использованию!

Основные особенности эковаты

Первую эковату в России изготовили примерно восемь лет тому назад. В те времена рыхлый утеплитель с незначительным весом (он на 4/5 состоял из переработанной макулатуры и на 1/5 из добавок) стал настоящей сенсацией.

Обратите внимание! Этот теплоизолятор такой теплый и легкий благодаря особой целлюлозной структуре. Он отлично сохраняет теплый воздух, не гниет, не покрывается плесенью. Кроме того, он устойчив к грызунам и насекомым.

Таблица №1. Основные характеристики целлюлозного утеплителя

Теперь поговорим о свойствах эковаты. Материал обладает некоторыми ключевыми преимуществами, выгодно отличающими его от аналогичных теплоизоляторов и являющимися основными причинами того, что многие потребители делают выбор именно в его пользу. Ознакомимся с этими преимуществами.


Стоит также заметить, что эковата способна защитить помещение не только от низкой, но и от высокой температуры, что достигается благодаря естественному строению волокон целлюлозы. Эковата «дышит», то есть она паропроницаема, но вместе с тем влагу внутри себя она не удерживает. Есть и другие не менее важные достоинства – к примеру, тот факт, что материал достаточно легко наносится, а после нанесения не остается никаких швов.

Да, наносить его действительно легко: как показала практика, двое работников за 24 часа вполне могут поклеить от 70 до 80 квадратных метров поверхности.

Обратите внимание! Уровень рН в эковате не превышает 8,3, следовательно, она не провоцирует процесс ржавления при контакте с железными элементами.

Также стоит отметить еще один весьма любопытный момент: у эковаты наилучшие шумоизоляционные параметры среди всех утеплителей. Если говорить о долговечности, то эксплуатационный срок целлюлозного утеплителя в российском климате составляет около 70-ти лет.

Технические и эксплуатационные характеристики

Итак, нам осталось только рассказать вкратце об эксплуатационных параметрах, из-за которых, собственно, многие и отдают предпочтение данному материалу. Начать следует с примитивной математики: к примеру, мы используем теплоизолятор плитового или рулонного типа, после монтажа которого остаются межшовные зазоры, составляющие 4 процента.

И это, очевидно, уже не эффективная работа, поскольку теплопроводность снижается как минимум вдвое. Но если посмотреть с другой стороны, то эковата заполняет пустоты под отделочным материалом максимально равномерно, а все стыки и пустоты при этом закрываются.

Технология нанесения в большинстве случаев предусматривает напыление, что и продемонстрировано на изображении. Но, в принципе, можно и попросту укладывать.

Также нужно учитывать и шумоизоляционные параметры, усиливающиеся ввиду проникновения тонких целлюлозных волокон практически во все щели. К примеру, если к 12,5-миллиметровому гипсокартону установить утеплитель толщиной в 5 сантиметров, то уровень шума снизится как минимум до 63 децибел. Если наращивать толщину и дальше, то с каждым сантиметром шумоизоляция будет повышаться еще на 4 децибела.

Теперь ознакомимся с другими техническими параметрами, которыми обладает целлюлозный утеплитель.

Показатель плотности эковаты составляет в среднем 30-65 килограмм на метр кубический, хотя более точные цифры зависят от конкретного производителя и сферы применения утеплителя.

Благодаря своему классу морозостойкости материал способен продержаться до 80-ти лет.

О теплопроводности мы говорили, она достаточно высокая. Тем не менее, она может меняться в ту или иную сторону в зависимости от применяемой технологии нанесения.

Что касается паропроницаемости, то она у эковаты составляет 0,3 мг/(м*ч*Па).

Наконец, класс горючести большей части утеплителей составляет В1 (трудновозгораемый материал) или Г2 (то есть, умеренно горючий). Порой встречается и Д2, что согласно ГОСТу обозначает материалы, отличающиеся низкой дымообразующей способностью.

ГОСТ 30244-94

Видео – Проверка целлюлозного утеплителя

Недостатки материала

Да, недостатки у эковаты есть и с ними обязательно следует ознакомиться.

  1. Прежде всего, если напыление осуществляется влажным способом, то все железные элементы конструкции нужно защитить при помощи специальной краски или лака, иначе те начнут ржаветь. Дело в том, что такой утеплитель полностью высыхает только через два месяца.
  2. Цена. К примеру, для стен нужна плотность как минимум в 60 килограмм на кубометр. Кубометр эковаты состоит из четырех упаковок по 15 килограмм каждая. Выходит, что стоимость утеплителя начинается от 1 600 руб. Если сравнить с минеральной ватой (она стоит от 1 300 руб.), то это и в самом деле довольно дорого. Для ручной установки на плоских поверхностях стоимость несколько ниже – около 900 руб. за кубометр при условии, что плотность материала будет составлять 35 килограмм на кубометр.
  3. Никаких конкретных требований относительно целлюлозного утеплителя ни в ГОСТе, ни в СНиПе нет, поэтому качество материала зависит лишь от честности фирмы-изготовителя. И многочисленные отзывы недовольных покупателей – яркое тому подтверждение.
  4. Эковата не используется под цементную стяжку. Материал этот мягкий, следовательно, ему нужно свободное пространство.
  5. Наконец, последний минус – это значительная усадка. Спустя некоторое время после монтажа он выветривается посредством трещин и зазоров, поэтому тщательная герметизация всех дефектов готового покрытия является обязательным условием.

Как видим, все недостатки очень важны, но их количество и наличие в принципе зависит от того, какая конкретно фирма занималась производством. У некоторых вместо кислоты борной применяются сульфаты аммония, из-за чего биологическая устойчивость заметно снижается. До того, как покупать материал, обязательно потребуйте у продавца все необходимые сертификаты. Помимо того, проверьте, сколько весит упаковка, сравните полученный вес с весом других аналогичных товаров.

Обратите внимание! Если нет сертификатов и маркировки на упаковке, а также если утеплитель продается по слишком низкой цене, то самое время насторожиться: может быть, под видом эковаты вам пытаются «втюхать» обыкновенную измельченную целлюлозу, в которой никаких полезных добавок нет.

Словом, лучше немного переплатить, но приобрести действительно качественный целлюлозный утеплитель, способный прослужить вам не одно десятилетие.

Стоимость

Теперь вкратце поговорим о стоимости на примере конкретных марок. Так, 15-килограммовый мешок утеплителя «Эковата Экстра» стоит 510 рублей. Стоимость белгородской «Эковаты» составляет как минимум 33,5 рубля за килограмм. Дальше – в том же духе, цена варьируется между 25 и 40 руб. Зарубежный утеплитель стоит, разумеется, несколько дороже.

Видео – Вся правда об эковате

Как наносить целлюлозный утеплитель своими руками

Итак, мы выяснили, что по многочисленным параметрам описываемый в статье утеплитель является лучшим вариантом для выполнения теплоизоляции. А если знать, как грамотно определить расход материала и рассчитать площадь обрабатываемой поверхности (с некоторым запасом), то единственное, что остается сделать – выбрать конкретную технологию нанесения. Вариантов два.

  1. Напыление.
  2. Укладка.

Обратите внимание! Главное достоинство напыления заключается в том, что швов после монтажных работ не остается, а слой утеплителя получается равномерным и ровным. Более того, с работой легко справиться своими силами. Эковата схватывается с поверхностью быстро и надежно, он скрывает (наподобие кокона) все коммуникации и электрическую проводку.

Если же рассматривать сухую укладку, то ее рекомендуется использовать при утеплении горизонтальных поверхностей. Достоинством в данном случае будет отсутствие отходов и то, что сцепляемость теплоизолятора будет универсальной для всех типов поверхности – для древесины, металла, цемента, камня, кирпича или даже стекла.

Ознакомимся с каждой из технологий более детально.

Вариант №1. Укладка эковаты насухую

Данная методика представляет собой достаточно простой в исполнении процесс, для которого не потребуется арендовать дорогостоящую выдувную аппаратуру. Более того, для работы в данном случае потребуется всего один или два человека.

Вначале подготавливается специальная емкость. В нее укладывается эковата, которая после этого распушивается посредством электрической дрели или же монтажного миксера. Рабочая поверхность очищается и должным образом подготавливается, после чего на нее высыпается готовый распушенный состав. Как уже отмечалось выше, данная технология идеально подходит для термоизоляции пола.

Если же говорить о стенах, то для них потребуется сооружение особого каркаса (или, как вариант, вы можете приобрести уже готовую заводскую каркасную конструкцию), куда целлюлозный утеплитель будет укладываться и тщательно утрамбовываться послойно (толщина слоя должна составлять 50 сантиметров).

Вариант №2. Укладка насухую с применением специального оборудования

Выдувные аппараты (в большинстве случаев используется так называемая выдувная пушка) используются при проведении профессиональных строительных работ с целлюлозным утеплителем. Стоит знать, что данная методика сопряжена не только с дополнительными расходами. Дело в том, что она вполне себя окупает, если речь идет о больших объектах или поверхностях значительной площади.

Это особенно актуально в сооружении жилых многоэтажных зданий, когда требуется заполнить перекрытие в цоколе или между этажами, в крыше наклонного типа или в стеновых полостях.

В ходе непосредственно монтажа эковата нагнетается в используемом оборудовании, после чего распыляется под высоким давлением по обрабатываемом пространстве. В дальнейшем волокна благодаря своими физическим характеристиками расширяются, попадает во все впадины и щели, причем даже в те места, в которые невозможно было бы добраться, если бы укладка проводилась вручную.

Вариант №3. Влажная укладка

Такая технология целесообразна для теплоизоляции вертикальных поверхностей, где, как известно, без клеящего состава уже никак не обойтись. В таких целях эковата используется в виде рулонов или плит и может укладываться не только двумя-тремя слоями, но также и с нахлестом, дабы исключить образование швов, которые пропускают холодный воздух.

Лигнин, который выделяется при увлажнении целлюлозных волокон, уже сам по себе обладает высокой адгезией, поэтому утеплитель надежно сцепляется с рабочей поверхностью. Как результат – утеплитель отлично держится и формирует плотный защитный слой. Как правило, в инструкции производителя рассказывается, какой из вариантов укладки лучше выбрать для тех или иных условий нанесения.

Тонкости утепления

Рассмотрим основные нюансы при термоизоляции той или иной части здания.

При утеплении несущих конструкций эковату можно наносить не только снаружи, но и внутри дома. Как бы то ни было, вначале фиксируется профили для дальнейшего монтажа панелей, далее – по выбранной ранее методике – наносится утепляющий материал. К слову, при использовании методики сухого нанесения эковату вполне можно наносить при уже установленных отделочных панелях, применяя для этого предварительно оставленные отверстия.

В ходе работы не стоит забывать о термоизоляционных свойствах материала, из которого выполнены стены. Таким образом, стоимость проведения строительных работ может сократиться примерно на 30 процентов.

Отапливаемые чердаки и мансарды отлично утепляются при помощи целлюлозного утеплителя. И действительно, материал этот экологически чистый, да и потери тепла он исключает практически полностью. Толщина утепляющего слоя в данном случае должна составлять 75-100 миллиметров.

Эковата – это отличный вариант для межэтажных перекрытий. Он не только утепляет, но и повышает шумоизоляцию каждого из помещений. Если планируется обустройство «теплого пола», то целлюлоза должна укладываться поверх черновой стяжки, уложенной на щебневую «подушку».

Видео – Эковата «Юнизол»

В итоге отметим, что целлюлозный утеплитель – это идеальный вариант для жилых зданий. Его достоинства очевидны, а немногочисленные минусы несущественны или же легко устранимы. На этом все, удачи и теплых вам зим!



erkas.ru - Обустройство лодки. Резиновые и пластиковые. Моторы для лодок