Что такое навигационные звезды. Звездное небо и звездный глобус

«Карта созвездий» - Заполните таблицу. Проверь себя. Гигантский пылающий шар. Созвездие Близнецы. Большая медведица. Зодиакальные созвездия. Знаки зодиака. Карта звездного неба. Созвездие Большой пёс. Скопления звезд. Созвездие Орион. Созвездия.

«Карта звёздного неба» - Южная часть неба зимой. Звёздное небо. Названия. Огромное окно. Южная часть неба весной. Арктур. Ковш Большой Медведицы. Южная часть неба. Северная Корона. Северная часть неба. Телец.

«Зодиакальные созвездия» - 12 созвездий. Наблюдатели. Лев. Скорпион. Рыбы. Участки. Козерог. Змееносец. Дева. Весы. Список. Стрелец. Овен. Телец. Водолей. Близнецы. Рак. Созвездия.

«Созвездия звёзд неба» - Николай Коперник (1473-1543) В центре – Солнце, а вокруг движутся планеты. Ход работы: Описание на стр. 20 В созвездии Большая Медведица - … звезд. Определение на звездной карте созвездий Северного полушария. В созвездии Малая Медведица - … звезд. Земля движется и вокруг Солнца и вокруг своей оси. Галилео Галилей (1564-1642) Построил первый в мире телескоп.

«Созвездия на небе» - Звёзды и созвездия. По какому пути нельзя пройти. Из какого ковша не пьют. Элемент небесного явления. Созвездие Кассиопеи. Созвездия. Днем спит, ночью глядит. Мы отправимся в путешествие к далёким звёздам. Никого не родила, а все матушкой зовут. Созвездие Персея. Две вещи наполняют душу. Через тернии к звёздам.

«Созвездия звездного неба» - На небе, кстати, существует ряд созвездий, отражающих Корабль Арго. Лев фигурируют в мифах о Геракле. Многие древние народы почитали овна, считали его священным. На Крите быка звали Минотавр. Слово «регул» имеет один корень с глаголом «регулировать», и это не случайно. Как и Скорпион, Стрелец очень богат красивыми туманностями.

Навигационные звезды

звезды 1-3-й видимой звездной величины, используемые мореплавателями и летчиками при определении местоположения кораблей и самолетов вне видимости земных ориентиров. На эти звезды в «Морском астрономическом ежегоднике» даются эфемериды (координаты).

  • - постановления англ. парламента для защиты морской торговли Англии от иностр. конкуренции. Первый Н. а. был принят в 1381...

    Советская историческая энциклопедия

  • - устройства, предназначенные для измерения элементов движения корабля, ЛА и других подвижных объектов, получения навигационных параметров для определения их местоположения и исходных данных для применения оружия...

    Словарь военных терминов

  • - звезды видимой звездной величины, используемые мореплавателями и летчиками при определении местоположения кораблей и самолетов вне видимости земных ориентиров...

    Архитектурный словарь

  • - сигнально-отличительные огни, судовые огни, - огни, к-рые должны нести суда в ночное время. Позволяют др. мореплавателям судить о курсе судна, направленности его действий и т. д. ...

    Большой энциклопедический политехнический словарь

  • - звезды 1-3-й видимой звездной величины, используемые мореплавателями и летчиками при определении местоположения кораблей и самолетов вне видимости земных ориентиров...

    Морской словарь

  • - то же, что знаки предостерегательные...

    Морской словарь

  • - инструменты, употребляемые в морском деле в целях обеспечения кораблевождения...

    Морской словарь

  • - см. Морские карты...

    Морской словарь

  • - устройства, предназначенные для измерения отдельных элементов движения корабля, летательных аппарата и других подвижных объектов, получения навигационных параметров для определения их...

    Морской словарь

  • - устройства для обеспечения аэронавигации, навигации и эффективного использования оружия...

    Морской словарь

  • - ряд постановлений английского парламента, направленных на поощрение и охрану от иностранной конкуренции морской торговли и промышленности Англии. Н. а. издавались в 1381, 1382, 1488-89, 1532, 1540, 1563 1650, 1651, 1660, 1663, 1672 и 1696...

    Дипломатический словарь

  • - Ферсман, 1934, - схемы ассоциирующих или возможных к ассоциации хим. элементов, располагаемых по вертикальным и горизонтальным рядам, способных, с точки зрения законов изоморфизма замещать определенный элемент...

    Геологическая энциклопедия

  • - навигационные ориентиры, устанавливаемые на берегу, островах или на мелководье. бывают светящими и несветящими, одиночными и створными...

    Морской словарь

  • - приборы, посредством которых измеряют глубину моря под килем судна. Л. Н. по роду своего устройства разделяются на: 1. Ручной лот и диплот. 2. Механические лоты и 3...

    Морской словарь

  • - акты английского парламента, принимавшиеся для защиты морской торговли Англии от иностранной конкуренции. Первый Н. а. был принят в 1381...

    Большая Советская энциклопедия

  • - См....

    В.И. Даль. Пословицы русского народа

"Навигационные звезды" в книгах

Из книги Живые часы автора Уорд Ритчи

12. Навигационные способности птиц

Из книги Живые часы автора Уорд Ритчи

12. Навигационные способности птиц Открытие способности птиц ориентироваться по солнцу изумило ученых, но то, что во время ночных пролетов птицы ориентируются по звездам, буквально потрясло их. Это было доказано через несколько лет после открытия Крамера молодыми

ТАБУИРОВАННЫЕ МЕСТА И НАВИГАЦИОННЫЕ КАМНИ

Из книги Доказательства существования богов [Более 200 сенсационных фотографий артефактов] автора Дэникен Эрих фон

ТАБУИРОВАННЫЕ МЕСТА И НАВИГАЦИОННЫЕ КАМНИ По сей день обитатели Кирибати боятся бывать в некоторых районах островов, которые считаются табуированными, поскольку здесь когда-то обитали «могущественные духи». При содействии местных жителей однажды мне удалось посетить

2. Навигационные опасности и плавучие предостерегательные знаки

Из книги Учись морскому делу автора Багрянцев Борис Иванович

2. Навигационные опасности и плавучие предостерегательные знаки Для ориентировки мореплавателей и предоставления им возможности определения места своего корабля, указат ния кромок фарватеров, обозначения начальных точек и оси фарватера (канала) и середины прохода, а

Интегральные навигационные системы

Из книги Эхолоты и GPS навигаторы автора Евстратов Валерий Александрович

Интегральные навигационные системы Последним достижением судовой радиоэлектроники стало создание интегральных навигационных систем. Такие системы объединяют в себе функции нескольких различных приборов. Ранее уже упоминалось о эхолотах-приемниках GPS, об

Береговые навигационные огни

Из книги Яхтинг: Полное руководство автора Тогхилл Джефф

Береговые навигационные огни В местах, где извилистый фарватер или отдельные участки делают движение особенно трудным, используются системы из двух огней, чтобы провести судно, миновав все опасности.Створные огни Створные огни и береговые бакены облегчают

Астрономические навигационные устройства и системы

Из книги Большая энциклопедия техники автора Коллектив авторов

Астрономические навигационные устройства и системы Определение курса самолета является одной из важнейших задач каждого полета. Для этого существуют различные курсовые приборы, называемые компасами. Компасы бывают магнитные, гироскопические, астрономические и др.

Морские навигационные карты

Из книги Большая Советская Энциклопедия (МО) автора БСЭ

Навигационные акты

БСЭ

Навигационные сумерки

Из книги Большая Советская Энциклопедия (НА) автора БСЭ

Навигационные кнопки

Из книги Мобильный интернет автора Леонтьев Виталий Петрович

Навигационные кнопки Над адресной строкой проживает кнопочная панель, на которой представлены все наиболее популярные инструменты для перемещения по страничкам.Эта панель, наряду с адресной строкой – наш главный «пульт управления». Все кнопки здесь полезны, все –

Навигационные возможности для связанных таблиц

Из книги Язык программирования С# 2005 и платформа.NET 2.0. автора Троелсен Эндрю

Навигационные возможности для связанных таблиц Чтобы продемонстрировать возможности DataRelation при программной реализации доступа к данным связанных таблиц, добавьте в форму новый тип Button и соответствующий ему TextBox. В результате конечный пользователь должен получить

1.15. Добавление кнопок на навигационные панели с помощью UIBsrButtonItem

Из книги iOS. Приемы программирования автора Нахавандипур Вандад

1.15. Добавление кнопок на навигационные панели с помощью UIBsrButtonItem Постановка задачи Необходимо добавить кнопки на навигационную

3.3.2 Навигационные спутниковые системы

Из книги Военные аспекты советской космонавтики автора Тарасенко Максим

3.3.2 Навигационные спутниковые системы Уже опыт слежения за первым спутником в 1957 г. показал, что измерение доплеровского сдвига частоты радиосигнала, излучаемого движущимся по известной орбите передатчиком, может быть использовано для определения географических

Навигационные приборы парусного флота

Из книги автора

Навигационные приборы парусного флота Находящийся в открытом море, вне видимости берегов, корабль должен «знать», где он находится, куда и как быстро плывет, сколько футов под килем и каково его расположение относительно земных и небесных тел. Первое, что интересует

Блестящие достижения советской науки и техники в области космических полетов - первый в мире спутник Земли, первая ракета на Луне, первая ракета на пути к Венере, первый космический корабль-спутник и первый человек на борту космического корабля, совершившего полет во Вселенную, - привлекают все больше людей к изучению практической астрономии.

В предлагаемой вниманию читателей книге рассказывается о том, какое большое практическое значение для человека имеет ориентировка по звездам и другим небесным светилам, как самостоятельно отыскать на небе наиболее яркие созвездия и звезды, как определить время по звездам и Солнцу, а также об астрономических методах ориентировки на местности, определении курса и места самолета в полете, об ориентировке во время космического полета.

Некоторый фактический материал (общие сведения о Галактике, о движении Солнца, Луны и планет, основные системы небесных координат) расширяет общий кругозор читателя.

В книге в научно-популярной форме обобщены последние данные советской и зарубежной авиационной астрономии. Она написана доступным языком и рассчитана на широкий круг читателей - летный состав, курсантов и слушателей средних и высших учебных заведений ВВС, ГВФ и ДОСААФ, а также лиц, интересующихся вопросами ориентировки по небесным светилам.

Книга:

ЗВЕЗДНОЕ НЕБО

<<< Назад
Вперед >>>

ЗВЕЗДНОЕ НЕБО

В ясную безлунную ночь над нашей головой видны и яркие звезды, сразу привлекающие к себе внимание, и менее яркие, и еле различимые невооруженным глазом. В одной стороне неба одни звездные рисунки, в другой - другие (см. приложение). Некоторые группы звезд своими рисунками напоминают какие-то фигуры: ковша, креста, серпа и т. д.

Наиболее яркие звезды отличаются друг от друга и цветом. Из-за различия температуры поверхности звезд одни из них излучают белый свет, другие - желтоватый, третьи- красноватый или оранжевый и т. д.

С Земли кажется, что звездное небо, как одно целое, как внутренняя поверхность огромного шара, постоянно вращается вокруг оси. Вращение небесного свода, на котором звезды неподвижны одна относительно другой, можно заметить в течение одного - двух часов. За сутки небесный свод делает полный оборот. Если сфотографировать это вращение звездного неба, на снимке звезды прочертят линии, соответствующие их движению. Особенно наглядно вращение звездного неба близ полюса мира (рис. 13).

Но вращение небесной сферы кажущееся. На самом деле вращается вокруг своей оси Земля.

Вследствие вращения Земли вокруг своей оси видимое суточное вращение небесной сферы вокруг оси мира происходит с угловой скоростью, равной скорости вращения Земли, но в обратном направлении. При этом каждая звезда описывает малый круг; плоскости этих кругов параллельны плоскости небесного экватора.


На разных географических широтах картина кажущегося вращения небесного свода различна. В средних широтах (рис. 14, а) звезды, расположенные недалеко от Полярной звезды, описывают вокруг нее окружность, не заходя за горизонт. Для данной широты это так называемые незаходящие светила. Некоторые звезды показываются из-за горизонта и, пройдя по небосводу, скрываются. Светила, расположенные недалеко от южного полюса мира, совсем не видны, так как при вращении не выходят из-за горизонта. Это невосходящие светила.


Из рис. 14 видно, что незаходящими светилами в Северном полушарии будут такие, у которых? ? (90° - ?), невосходящими - такие, у которых? ? - (90° - ?). Условием восхода и захода светил будет

- (90° - ?) ? ? ? (90° -?).

С увеличением широты места наблюдения количество незаходящих, а значит, и невосходящих звезд увеличивается.

На Северном полюсе Земли (рис. 14,б) можно наблюдать только одну небесную полусферу. Там полюс мира совпадает с зенитом, истинный горизонт - с небесным экватором, горизонтная система координат-с экваториальной. Явлений восхода и захода звезд нет. Все видимые звезды вращаются вокруг Полярной звезды параллельно истинному горизонту. Высоты звезд постоянны и равны их склонениям, а азимуты изменяются равномерно от 0° до 360° (для измерения азимута надо несколько отойти от точки полюса).

На земном экваторе (рис. 14, в) для наблюдения доступна вся небесная сфера. Все звезды восходят и заходят, причем направление их движения перпендикулярно к плоскости истинного горизонта. Полярная звезда видна около точки севера, т. е. у самого горизонта в северном направлении.

По яркости (блеску) звезды делятся на группы в соответствии со звездными величинами. К звездам 1-й величины относятся те, которые в 100 раз ярче самых слабых по яркости звезд, видимых при нормальном зрении невооруженным глазом; звезды, яркость которых в 2,5 раза меньше, чем звезд 1-й величины, считаются звездами 2-й величины, а те, которые по яркости в 2,5 раза слабее звезд 2-й величины, относятся к звездам 3-й величины и т. д., т. е. каждая следующая группа слабее предыдущей по яркости в 2,5 раза. Самые слабые звезды, видимые при нормальном зрении невооруженным глазом, являются звездами 6-й величины.

Для более точного определения яркости применяются дробные обозначения звездных величин. Например, звездная величина Полярной звезды 2,1; Алиота 1,7; Беги 0,1 и т. д. Есть звезды, звездная величина которых меньше единицы и даже меньше нуля.

Самые яркие звезды на небе - это Сириус и Канопус. Их величина выражается отрицательным числом: у Сириуса она равна-1,3; у Канопуса -0,9. Десять звезд имеют величину от нуля до единицы. Это Бега, Арктур, Капелла, Процион, Альтаир, Бетельгейзе, Ригель, Ахернар, ? и? Центавра. Ярче звезд 2-й величины 41 звезда-, ярче 3-й - 138, ярче 4-й - 357, ярче 5-й - 1030 звезд и т. д. Хотя современные телескопы позволяют видеть звезды только до 23-й звездной величины, путем математических расчетов установлено, что существуют звезды по меньшей мере 50-й звездной величины и что наибольшее количество звезд 27-й звездной величины. Человек с нормальным зрением видит над горизонтом одновременно около 2500 звезд (до 6-й звездной величины).

Яркость самых ярких небесных светил, выраженная в звездных величинах, составляет: Солнца -26,7, Луны (полной) -12,6, Венеры -4,3, Марса -2,8, Юпитера -2,5 (звездные величины планет даны соответственно их наибольшему блеску).

Звездное небо условно разделено на участки разнообразной формы, называемые созвездиями. Каждое из них имеет свое название. Эти названия были даны созвездиям еще в древние времена и отражают сходство конфигураций отдельных групп звезд с очертаниями некоторых предметов, с фигурами тех или иных животных и сказочных героев. В связи с этим на старинных картах звездного неба созвездия изображались в виде контуров соответствующих фигур.

В каждом созвездии яркие звезды обозначаются буквами греческого алфавита, а наиболее яркие из них имеют, кроме того, и свои названия. Менее яркие звезды чаще обозначаются буквами латинского алфавита или цифрами.

Принадлежность звезд к одному созвездию - это их «видимая» близость. В действительности звезды одного созвездия находятся на самых различных расстояниях от нас.

Для определения навигационных элементов в самолетовождении используется относительно небольшое количество небесных светил: днем - Солнце и иногда Луна; ночью- Луна, наиболее яркие планеты (Марс, Юпитер, Сатурн, Венера) и так называемые аэронавигационные звезды, для которых составлены специальные астрономические таблицы: это Сириус, Канопус, Вега, Арктур, Капелла, Ригель, Процион, Ахернар, Бетельгейзе, Альтаир, Альдебаран, Антарес, Поллукс, Спика, Денеб, Регул, Фомальгаут, ? Креста, ? Южного Треугольника, Ригиль, Алиот, Каус Астралия, Пикок, Полярная звезда, Альферац, Хамаль и Эль Сухейль.

Существует несколько способов отыскания звезд. Один из них состоит в следующем.

В северном полушарии звездное небо условно делится на три больших участка с яркими созвездиями и звездами.

В первом из них (рис. 15) отправным пунктом для отыскания многих аэронавигационных звезд служит созвездие Большой Медведицы, семь наиболее ярких звезд которого образуют характерную фигуру ковша или кастрюли. По древнему преданию, Большая Медведица (рис. 16) - это превращенная богиней Герой в медведицу Каллисто, дочь царя Ликаона, чуть не затравленная на охоте псами пастуха Волопаса. Созвездия Большой Медведицы, Волопаса и Гончих Псов расположены поблизости друг от Друга. Древние арабы называли созвездие Большой Медведицы Семибратием.





Вследствие вращения звездного неба ручка ковша созвездия Большой Медведицы в разное время бывает направлена то влево, то вниз, то вверх, а иногда ковш как бы опрокинут и виден почти над головой (рис. 13).

Третья от конца ручки ковша звезда - Алиот - аэронавигационная звезда. Действительная яркость ее в 3500 раз превосходит яркость нашего Солнца. Кажется же она небольшой светящейся точкой, потому что находится от нас на громадном расстоянии - 50 световых лет, хотя является самой близкой из звезд Большой Медведицы.

Вторая от конца ручки ковша звезда называется Мицар. Если внимательно всмотреться в окружающее ее пространство, то в безлунную ночь и при хорошей прозрачности атмосферы можно увидеть рядом с ней едва заметную звездочку,. называемую Алькор. Эта звезда 6-й величины; так как яркость ее стоит на самом пределе видимости невооруженным глазом, то по ней можно проверять свое зрение.

Если мысленно провести прямую линию через две крайние звезды в «передней стенке ковша», то на этой линии на расстоянии, равном примерно пяти расстояниям между теми же звездами, вверх от дна ковша можно увидеть Полярную звезду. Она находится почти у точки северного полюса мира (меньше чем в 1° от него) и поэтому может служить надежным ориентиром для определения направления на север. Недаром народы Средней Азии назвали Полярную звезду «Темир-козух», что значит «железный гвоздь». Она находится от нас в 6 раз дальше, чем Алиот. Полярная звезда входит в созвездие Малой Медведицы, яркие звезды которого, хотя и слабее звезд Б. Медведицы, напоминают ковш, но меньшего размера.

Если через звезды, образующие ручку ковша Б. Медведицы, провести дугу и продолжить ее тем же радиусом, то на этой линии будут находиться яркие звезды: Арктур, входящий в созвездие Волопаса, и дальше Спика, входящая в созвездие Девы.

Арктур по диаметру в 26 раз больше Солнца, находится от Земли на расстоянии 36,2 светового года. Его действительная яркость в 78 раз больше яркости Солнца.

Спика по диаметру в 5 раз больше Солнца, ее действительная яркость в 575 раз больше яркости Солнца. Она удалена от нас на колоссальное расстояние- 155 световых лет.

Продолжим ручку ковша Б. Медведицы по прямой, проведенной через крайнюю и среднюю звезды. Эта прямая пройдет мимо хорошо видимого на небе серпообразного созвездия Северной Короны, и на расстоянии, примерно в два раза большем, чем расстояние от Северной Короны до средней звезды ковша Б. Медведицы, можно увидеть аэронавигационную звезду Антарес, входящую в созвездие Скорпиона. Северная Корона - одно из самых маленьких и хорошо видимых созвездий северного неба. В центре созвездия выделяется самая яркая звезда - Гемма, что в переводе с древнегреческого означает «жемчужина».

Антарес - одна из самых больших звезд-гигантов. Она по объему в 36 000 000 раз больше Солнца и могла бы включить в себя Солнце вместе с земной орбитой. Действительная ее яркость в 690 раз превышает яркость Солнца. Антарес удален от нас на расстояние в 172 световых года. В переводе с греческого Антарес означает «соперник Марса». Как и планета Марс, Антарес имеет красноватый цвет.

Чтобы найти последнюю аэронавигационную звезду этого участка неба - Регул, нужно провести прямую линию через две внутренние звезды (у основания ручки) ковша Б. Медведицы в сторону, противоположную Полярной звезде. На этой линии на расстоянии, примерно в 1,5 раза большем, чем расстояние от Б. Медведицы до Полярной звезды, и будет находиться Регул, входящий в созвездие Льва, наиболее яркие звезды которого образуют фигуру, несколько напоминающую удлиненную трапецию. Действительная яркость Регула в 145 раз превосходит яркость Солнца, расстояние до него 83,6 светового года.

Вследствие видимого годового движения Солнца вид звездною неба зависит от времени года. Весной небесный свод выглядит иначе, чем летом, а летом иначе, чем осенью "И зимой. Полярная звезда и звезда Алиот, входящие в околополюсные созвездия, видны в любое время года. Арктур виден большую часть года: весной и осенью он виден всю ночь, осенью появляется с вечера в западной части неба, потом уходит под горизонт, а к утру снова восходит в восточной части неба. Зимой Арктур прекрасно виден во второй половине ночи. Спика - весенняя звезда, она хорошо также видна зимой после полуночи.

Звезда Антарес хорошо видна у самого горизонта весной после полуночи »и летом до полуночи, когда хвост созвездия Б. Медведицы опущен к югу. Особенно хорошо она видна в южных республиках Советского Союза.

Звезда Регул, как и все созвездие Льва, - одно из самых красивых и легко отыскиваемых созвездий, хорошо видна весной и зимой.

На втором участке неба (рис. 17) находится одно из красивейших созвездий-Орион. Четыре его яркие звезды образуют большой четырехугольник, внутри которого близко друг к другу расположены еще три звезды - пояс Ориона. По древнегреческому мифу, Орион - великан-охотник, наделенный исключительной красотой (рис. 18).





Две самые яркие звезды этого созвездия, находящиеся в противоположных углах четырехугольника, являются аэронавигационными. Звезда, которая находится ближе к Полярной, называется Бетельгейзе, а противоположная ей - Ригель. На продолжении спиральной линии, начатой в поясе и проведенной через крайние звезды созвездия Орион в направлении против хода часовой стрелки, последовательно можно увидеть Альдебаран, Капеллу, Поллукс, Процион и Сириус.

Бетельгейзе (в переводе с арабского означает «звезда в плече гиганта») - огромное светило, звезда-сверхгигант. По объему она во много миллионов раз больше Солнца, действительная ее яркость в 13 000 раз превосходит яркость Солнца. Температура поверхности небольшая - около 3000°, чем и объясняется красноватый цвет этой звезды. Бетельгейзе удалена от нас на огромное расстояние - 652 световых года. Собственно, сейчас мы видим не настоящую звезду Бетельгейзе, а ту, какой она была более шести веков назад. Бетельгейзе - зимняя звезда, но она хорошо видна осенью после полуночи и в начале весны до полуночи.

Ригель - вторая по видимой яркости звезда из созвездия Орион, обладающая очень (высокой светимостью: она в 23 000 раз ярче Солнца, температура ее поверхности в два раза выше температуры поверхности Солнца. По своей действительной яркости, характеризующей мощность светового излучения, Ригель превосходит все известные звезды. Источником столь мощного светового и теплового излучения является, как и у других звезд, внутриядерная энергия, высвобождающаяся при превращении одних химических элементов в другие. Эти процессы происходят под воздействием огромных давлений в недрах звезд и больших температур, достигающих многих миллионов градусов.

Звезда Ригель находится от Земли на расстоянии 652 световых лет. Как и все созвездие Орион, она видна на зимнем небе, а также осенью после полуночи.

Альдебаран - украшение зодиакального созвездия Тельца. Древним людям в этом месте неба представлялась фигура дикого быка. По блеску эта звезда уступает Бетельгейзе, но превосходит Арктур, Спику и Ригель. Альдебаран- звезда двойная. Одна из ее звезд превосходит Солнце в 120 раз по яркости и в 40 раз по диаметру; другая-маленькая звезда: ее яркость составляет всего лишь 0,002 яркости Солнца. Обе звезды вращаются одна вокруг другой.

Альдебаран виден на небе зимой, осенью до полуночи и ранней весной.

В созвездие Тельца входит одно из многочисленных звездных скоплений - Плеяды. Плеяды, по преданию,- девять дочерей великана Атланта, которые спасались бегством от преследовавшего их охотника Ориона и были превращены в звезды. Звездное скопление Плеяды находится от нас на расстоянии в несколько сот световых лет. Оно насчитывает около 130 звезд, однако невооруженным глазом можно увидеть не более девяти. Человек с нормальным зрением при хороших условиях наблюдения может увидеть 5-6 звезд, а с более острым зрением - 7-9 звезд.

Капелла (в переводе с латинского «козочка») - самая яркая звезда созвездия Возничего, наиболее яркие звезды которого образуют хорошо заметный на небе пятиугольник, немного вытянутый в направлении созвездия Б. Медведицы. Капелла удалена от Земли на расстояние 44,6 светового года; действительная яркость ее в 125 раз превышает яркость Солнца. Это звезда тройная, вокруг нее вращаются две относительно небольшие звездочки, не видимые невооруженным глазом. Капелла в средних географических широтах видна во все времена года.

Поллукс - звезда зодиакального созвездия Близнецов, находящаяся от нас на удалении 32,9 светового года.

Солнце проходит через созвездие Близнецов в июне (здесь расположена точка летнего солнцестояния). В декабре, когда Солнце находится в противоположной части неба, созвездие Близнецов хорошо наблюдать в полночь. Поллукс виден зимой, почти всю весну и осенью во второй половине ночи.

В созвездии Близнецов недалеко от Поллукса (что, очевидно, и определило название созвездия) хорошо видна еще одна яркая звезда - Кастор (Кастор и Поллукс - это имена сиамских близнецов).

Процион - самая яркая звезда созвездия Малого Пса. Она относится к числу средних звезд, температура ее поверхности около 7000°, яркость в 5,9 раза превосходит яркость Солнца. Это самая близкая к нам аэронавигационная звезда после Ригиля (? Центавра) и Сириуса (11,3 светового года).

Процион - звезда зимнего неба, она видна также ранней весной до полуночи и во второй половине осени после полуночи.

Сириус (в переводе с греческого «пылающий», «искрящийся») - самая яркая звезда небесного свода и одна из ближайших к Земле звезд. Она находится от нас на расстоянии 8,7 светового года.

Наш глаз воспринимает только узкий пучок видимых лучей. Из всех электромагнитных волн, но если бы он имел способность ощущать и тепловые излучения, то самыми яркими звездами были бы Антарес, Альдебаран и Бетельгейзе, максимум излучения которых лежит в невидимой, инфракрасной области. Звезда Сириус по яркости тогда была бы на четвертом месте.

Сириус в 17 раз ярче Солнца; диаметр Сириуса в 1,6 раза больше диаметра Солнца. Температура поверхности Сириуса достигает 10 000°.

При наблюдении в бинокль около Сириуса можно обнаружить слабенькую беленькую звездочку. Это спутник Сириуса, обращающийся вокруг него с периодом в 40 лет.

Сириус бывает виден осенью и в начале зимы после полуночи, а также в конце зимы и в начале весны до полуночи. В древнем Риме первое после периода невидимости утреннее появление Сириуса в лучах восходящего Солнца совпадало с наступлением жары, времени тропических лихорадок и других эпидемий. В эту пору объявлялся перерыв в работе всех учреждений - наступал отпускной период. Созвездие Большой Пес, в которое входит Сириус, по латыни называется Канис Майор, что означает летний перерыв в занятиях, или каникулы. Школьники и студенты, употребляя слово «каникулы», очевидно, и не подозревают, что оно связано с названием созвездия Большого Пса.

На третьем участке неба (рис. 19) хорошо видны образуемое пятью звездами W-образное созвездие Кассиопеи и блестящая звезда Вега, единственная яркая звезда созвездия Лиры. В созвездии Кассиопеи нет аэронавигационных звезд, но оно может служить отличным ориентиром. Это яркое красивое околополюсное созвездие расположено на участке Млечного Пути и потому сверкает как бы на фойе светлого, серебристого тумана. От созвездия Кассиопеи к нам идет самое мощное из известных космическое радиоизлучение, источником которого является едва видимая кольцевая туманность, образовавшаяся более полутора тысяч лет назад в результате вспышки «сверхновой» звезды. Подобные вспышки в космосе не единичны и представляют собой исключительно интересный и динамичный физический процесс. За счет быстрого высвобождения из недр звезды ядерной энергии звезда вдруг начинает расшириться со старостью в несколько тысяч километров в секунду. Размеры звезды увеличиваются во много тысяч раз, действительная яркость ее достигает яркости миллионов Солнц. Спустя некоторое время звезда тускнеет и становится невидимой для невооруженного глаза, хотя ее газовая оболочка продолжает расширяться еще в течение многих тысячелетний излучать в мировое пространство радиосигналы, свидетельствующие о происшедшей в космосе катастрофе.



На прямой линии, идущей через две звезды Кассиопеи, наиболее удаленные от Полярной звезды, находится звезда Вега; ее можно также отыскать на продолжении прямой линии, проведенной через две внутренние звезды у основания ручки ковша Б. Медведицы в сторону, противоположную Регулу. Рядом с Вегой четыре слабые звезды созвездия Лиры образуют характерную фигуру маленького параллелограмма. Вега по размерам близка к Солнцу, температура ее поверхности около 10 000°, от нас она находится на расстоянии 26,5 светового года.

Вследствие прецессии земной оси полюс мира перемещается среди звезд и за 26 000 лет описывает окружность против хода часовой стрелки. Примерно к 22-столетию расстояние от Полярной звезды до полюса мира уменьшится в два раза и будет составлять 28’, а через 12 000 лет полюс мира будет находиться около звезды Вега на расстоянии 6°. Вега станет как бы «полярной» звездой.

К созвездию Лиры примыкает крестообразная фигура созвездия Лебедя (рис. 20). В вершине креста находится звезда Денеб, которая вместе с Вегой и Альтаиром - наиболее яркой звездой созвездия Орла, напоминающего фигуру самолета, - образует почти равнобедренный треугольник.



Созвездие Лебедя расположено в области Млечного Пути и поэтому очень богато звездами. Самая яркая звезда созвездия - Денеб - гигант среди звезд. Ее действительная яркость в 9400 раз больше яркости Солнца, а диаметр - в 35 раз больше солнечного. Температура поверхности достигает 11 000°. Денеб находится от нас на расстоянии 652 световых лет. В средних географических широтах Денеб можно наблюдать круглый год.

Альтаир в 8,3 раза ярче Солнца и в два с лишним раза больше его по диаметру. Температура поверхности Альтаира 10 000°; расстояние до Земли 16,6 светового года. Альтаир - звезда летнего неба, она видна также осенью до полуночи, в первой половине зимы сразу же после наступления темноты и во второй половине зимы перед рассветом, весной- во второй половине ночи.

Недалеко от рассмотренных созвездий, в противоположной Б. Медведице стороне от Полярной звезды, находится группа звезд созвездий Пегаса и Андромеды, образующих фигуру ковша, который значительно больше ковша Б. Медведицы. Наиболее яркая звезда у основания ручки этого ковша - ? Андромеды (? Пегаса), или Альферац, является аэронавигационной звездой.

Действительная яркость Альфераца в 130 раз превосходит яркость Солнца, но кажется он нам светящейся точкой, так как расстояние до него 120 световых лет. Альферац виден летом, осенью и в первой половине ночи зимой. Весной он виден перед рассветом, а некоторое время и после наступления темноты (в марте).

Недалеко от Альфераца в сторону созвездия Кассиопеи находится маленькое слабо мерцающее облачко. При хорошей прозрачности атмосферы его легко отыскать невооруженным глазом. Это знаменитая спиральная туманность Андромеды - наш ближайший внегалактический сосед (рис.2).

По древнему преданию, Андромеда - дочь эфиопского царя Цефея и его жены Кассиопеи - была прикована на берегу моря к скале и ее должен был растерзать страшный Кит. Проезжавший мимо на крылатом коне Пегасе герой Персей решил спасти Андромеду. У него в сумке была голова страшного чудовища - Медузы, обращавшего всякого, кто на нее смотрел, в камень. Персей же, глядя в свой блестящий, как зеркало, щит, победил Медузу, отрубив ей голову. Отрубленную голову Медузы он показал Киту и тем обратил его в камень. Спасенную Андромеду Персей вернул родителям. Созвездия Кассиопеи, Цефея, Пегаса, Персея и Кита расположены на небе вокруг созвездия Андромеды.

На продолжении прямой, идущей от ковша Б. Медведицы через Полярную звезду и созвездие Пегаса, находится красивая белая звезда Фомальгаут (рот рыбы), входящая в созвездие Южной Рыбы. Большая часть этого южного созвездия не видна в северных широтах, так как находится под горизонтом. В августе, сентябре, октябре Фомальгаут хорошо виден у самого горизонта. Яркость Фомальгаута в 11 раз больше яркости Солнца, расстояние до него 23 световых года.

Между звездами Альферац и Альдебаран находится еще одна небольшая аэронавигационная звезда этого участка неба - Хамаль, входящая в созвездие Овна. Она располагается в вершине прямоугольного треугольника, составленного звездой Альферац и одной из ярких звезд созвездия Кассиопеи. Ручка ковша созвездий Пегаса и Андромеды проходит между созвездиями Кассиопеи и Овна. Хамаль - осенняя звезда, в октябре -ноябре она видна всю ночь, зимой - в первой половине ночи, летом -во второй.

Южный полюс мира в отличие от северного не обозначен яркими звездами. Но, как и северное, южное звездное небо очень красиво своими своеобразными созвездиями и яркими звездами. Некоторые из них также используются как аэронавигационные. Это Канопус, Ахернар, Ригиль, Пикок, Эль Сухейль, Каус Астралия, ? Креста и? Южного Треугольника.

Большое красивое созвездие, известное прежде под названием Арго (корабль Аргонавтов), теперь разделено на отдельные созвездия: Киль, Корма, Компас и Паруса. Оно действительно напоминает старинный парусный корабль с очень яркой звездой Канопус в его киле и со звездой Эль Сухейль на парусах.

Вместе с Сириусом и Фомальгаутом, Пикок, Ригиль, ? Креста и Эль Сухейль расположены на одной дугообразной линии, идущей вокруг южного полюса мира. Близ этой линии, между звездами Пикок и Ригиль, находится небольшое созвездие Южный Треугольник с наиболее яркой звездой а Ю. Треугольника, а примерно посередине между Фомальгаутом и Канопусом можно увидеть Ахернар.

Аэронавигационная звезда Каус Астралия вместе со звездами Пикок и Антарес образует характерный равнобедренный треугольник.

Звезда Канопус удалена от нас на 181 световой год, ее яркость в 5400 раз превосходит яркость Солнца.

Ригиль (? Центавра) - ближайшая к нам звезда (4,24 светового года). Температура ее поверхности достигает 5000°, а яркость примерно равна яркости Солнца.

Звезда Ахернар находится на расстоянии от Земли примерно в 96 световых лет, температура ее поверхности превышает 16 000°, а яркость в 370 раз больше яркости Солнца.

Аэронавигационные звезды южного неба (рис. 21) на больших широтах-незаходящие светила. Поэтому они видны круглый год в течение всей ночи. На средних и малых широтах (примерно от 0° до 60° южной широты) видимость их на небе определяется временем года. Канопус виден зимой всю ночь, весной - в первой половине ночи и осенью - во второй. Ригиль виден весной всю ночь, летом- в первой половине ночи и зимой - во второй. Ахернар виден осенью всю ночь, зимой - в первой половине ночи и летом- во второй, ? Креста видна всю ночь в конце зимы и в начале весны, летом - в первой половине ночи, осенью и в начале зимы -во второй, а Ю. Треугольника видна всю ночь весной, летом - в первой половине ночи, зимой - во второй. Пикок виден всю ночь летом, осенью - в первой половине ночи и весной - во второй. Эль Сухейль видна зимой всю ночь, весной - в первой половине ночи и осенью - во второй. Каус Астралия видна всю ночь летом, осенью - впервой половине ночи и весной - во второй.

Мы рассмотрели основные звезды, применяемые для навигационных определений.



При изучении звезд надо натренировать себя так, чтобы уметь быстро находить нужные созвездия и звезды в отдельных участках звездного неба даже в тех случаях, когда другие участки закрыты облаками. Обычно несколько тщательных тренировок дают хорошие результаты, и, как правило, практически освоенные приемы отыскания звезд остаются в памяти на всю жизнь.

В табл. 1, цель которой облегчить отыскание аэронавигационных звезд на небе, звезды даны в порядке уменьшения яркости. Рядом с названием каждой из них в скобках указано, в какое созвездие она входит и какой буквой греческого алфавита обозначается.

Таблица 1

: Сириус (? Б. Пса)

Звездная величина : -1,3

Цвет звезды : Белый

Способ отыскания: По яркости и по расположению относительно созвездия Орион. Находится на спиралеобразной линии, идущей от созвездия Орион; последняя, самая нижняя звезда на этой спирали. Она также находится на прямой, идущей через пояс Ориона (рис. 17)

Наименование аэронавигационной звезды : Канопус (? Киля)

Звездная величина : -0,9

Цвет звезды : Желтый

Способ отыскания: По яркости. Находится на вершине прямого угла прямоугольного треугольника, образуемого звездами Сириус, Канопус, Эль Сухейль (рис. 21)

Вега (? Лиры)

Звездная величина: 0,1

Цвет звезды: Белый

Способ отыскания: По яркости. Находится в продолжении линии, проведенной через две внутренние звезды ковша Б. Медведицы или от двух крайних, наиболее удаленных от Полярной звезды звезд Кассиопеи. Прямые, идущие через Бегу, Полярную звезду и Алиот, образуют прямой угол. Около Беги расположен маленький параллелограмм из четырех неярких звезд. Поблизости созвездие Лебедя, имеющее характерную форму креста (рис. 19)

Наименование аэронавигационной звезды: Капелла (? Возничего)

Звездная величина: 0,2

Цвет звезды: Желтый

Способ отыскания: По яркости. Находится на спиралеобразной линии, идущей от созвездия Орион, между этим созвездием и Полярной звездой, а также на прямой, идущей от ковша созвездия Б. Медведицы (рис. 17)

Наименование аэронавигационной звезды: Арктур (? Волопаса)

Звездная величина: 0,2

Цвет звезды: Оранжевый

Способ отыскания: По яркости. Лежит на продолжении дугообразной линии ручки ковша созвездия Б. Медведицы (рис. 15)

Наименование аэронавигационной звезды: Ригель (? Ориона)

Звездная величина: 0,3

Цвет звезды: Голубой

Способ отыскания: Находится в правом нижнем углу созвездия Орион (рис. 17)

Наименование аэронавигационной звезды: Процион (? М. Пса)

Звездная величина: 0,5

Цвет звезды: Белый

Способ отыскания: Находится на спиралеобразной линии, идущей от созвездия Орион к звезде Сириус (рис. 17)

Наименование аэронавигационной звезды: Ахернар (? Эридана)

Звездная величина: 0,6

Цвет звезды: Желтый

Способ отыскания: Находится примерно на середине прямой, соединяющей звезды Капопус и Фомальгаут (рис. 21)

Наименование аэронавигационной звезды: Альтаир (? Орла)

Звездная величина: 0,9

Цвет звезды: Белый

Способ отыскания: По характерному созвездию Орла, четыре звезды которого напоминают фигуру самолета. Поблизости крестообразная фигура созвездия Лебедя и яркая звезда Вега (рис. 19)

Наименование аэронавигационной звезды: Бетельгейзе (? Ориона)

Звездная величина: 0,9

Цвет звезды: Красный

Способ отыскания: По цвету. Находится в верхнем левом углу созвездия Орион, наиболее яркая из двух его верхних звезд (рис. 17)

Наименование аэронавигационной звезды: Альдебаран (? Тельца)

Звездная величина: 1,1

Цвет звезды: Красноватый

Способ отыскания: По цвету. Находится на спиралеобразной линии, идущей от созвездия Орион. Неподалеку находится характерная группа неярких звезд Плеяды (рис. 17)

Наименование аэронавигационной звезды: Поллукс (? Близнецов)

Звездная величина: 1,2

Цвет звезды: Желтый

Способ отыскания: Находится на спиралеобразной линии, идущей от созвездия Орион, а также на прямой, идущей через ковш созвездия Б. Медведицы (рис. 17)

Наименование аэронавигационной звезды: Спика (? Девы)

Звездная величина: 1,2

Цвет звезды: Белый

Способ отыскания: Находится на продолжении дуги ручки ковша созвездия Б. Медведицы, следующая яркая звезда за Арктуром (рис. 15)

Наименование аэронавигационной звезды: Антарес (? Скорпиона)

Звездная величина: 1,2

Цвет звезды: Красный

Способ отыскания: Находится на продолжении прямой линии, идущей от ручки ковша созвездия Б. Медведицы, близ созвездия Северной Короны (рис. 15)

Наименование аэронавигационной звезды: Фомальгаут (? Южной Рыбы)

Звездная величина: 1,3

Цвет звезды: Белый

Способ отыскания: Находится на продолжении прямой, идущей от созвездия Б. Медведицы через Полярную звезду и крайние две звезды ковша созвездий Пегаса и Андромеды (рис. 19)

Наименование аэронавигационной звезды: Денеб (? Лебедя)

Звездная величина: 1,3

Цвет звезды: Белый

Способ отыскания: По характерной крестообразной фигуре созвездия Лебедя и по звездам Вега и Альтаир, с которыми Денеб образует почти равнобедренный треугольник (рис. 19)

Наименование аэронавигационной звезды: Регул (? Льва)

Звездная величина: 1,3

Цвет звезды: Белый

Способ отыскания: Находится на продолжении прямой, проведенной через две внутренние звезды у основания ручки ковша созвездия Б. Медведицы в сторону, примерно противоположную Полярной звезде (рис. 15)

Наименование аэронавигационной звезды: ? Креста

Звездная величина: 1,5

Цвет звезды: Голубой

Способ отыскания: По характерному расположению наиболее ярких звезд этого созвездия, образующих форму креста (рис. 21)

Наименование аэронавигационной звезды: Ригиль (? Центавра)

Звездная величина: 0,3-1,7

Цвет звезды: Желтый

Способ отыскания: Находится на дугообразной линии, идущее через звезды Фомальгаут, Пихок, Ригиль, ? Креста и Эль Сухейль, а также в вершине прямого угла прямоугольного треугольника, образуемого звездами Ригиль, Антарес, Спиха (рис. 21)

Наименование аэронавигационной звезды: Алиот (? Б. Медведицы)

Звездная величина: 1,7

Цвет звезды: Белый

Способ отыскания: Самая яркая звезда созвездия Б. Медзедицы, третья от конца ручки ковша (рис. 15)

Наименование аэронавигационной звезды: ? Южного Треугольника

Звездная величина: 1,9

Цвет звезды: Красный

Способ отыскания: По характерному треугольнику ярких звезд. Находится близ дугообразной линии, проходящей через звезды Фомальгаут, Пикок, Ригиль, ? Креста, Эль Сухейль, между звездами Пикок и Ригиль (рис. 21)

Наименование аэронавигационной звезды: Каус Астралия (? Стрельца)

Звездная величина: 2,0

Цвет звезды: Белый

Способ отыскания: Вместе с Пикоком и Антаресом образует почти равнобедренный тупоугольный треугольник (рис. 21)

Наименование аэронавигационной звезды: Пикок (? Павлина)

Звездная величина: 2,1

Цвет звезды: Голубой

Способ отыскания: Находится на дугообразное линии, проходящей через звезды Фомальгаут, Пикок, Ригиль, ? Креста, Эль Сухейль. Вместе с Антаресом и Каус Астралия образует почти равнобедренный тупоугольный треугольник (рис. 21)

Наименование аэронавигационной звезды: Альферац (? Андромеды)

Звездная величина: 2,1

Цвет звезды: Белый

Способ отыскания: Средняя и самая яркая из звезд ковша, образуемого созвездиями Пегаса и Андромеды и находящегося на продолжении прямой, идущей от созвездия Б. Медведицы через Полярную звезду (рис. 19)

Наименование аэронавигационной звезды: Полярная (? М. Медведицы)

Звездная величина: 2,1

Цвет звезды: Белый

Способ отыскания: Находится на продолжении прямой, проведенной через две крайние звезды ковша созвездия Б. Медведицы (рис. 15).

Наименование аэронавигационной звезды: Хамаль (? Овна)

Звездная величина: 2,2

Цвет звезды: Красный

Способ отыскания: Находится в одной из вершин прямоугольного треугольника, образуемого звездами Хамаль, Альферац и одной из крайних звезд созвездия Кассиопеи (рис. 19)

Наименование аэронавигационной звезды: Эль Сухейль (? Парусов)

Звездная величина: 2,2

Цвет звезды: Красный

Способ отыскания: Находится на дугообразной линии звезд Фомальгаут, Пикок, Ригиль, (? Креста, Эль Сухейль, Сириус, (рис. 21)

В процессе изучения звездного неба, чтобы облегчить отыскание и опознавание звезд, пользуются картами (атласами) звездного неба.

В авиационной астрономии применяется подвижная карта звездного неба, известная под названием бортовой карты неба - БКН (рис. 22). Она состоит из неподвижного основания, на котором вращается вокруг полюса мира звездная карта со звездами до четвертой величины, и накладного листа с вырезом, изображающим горизонт для заданной широты места. На звездной карте нанесены четыре круга склонений, которые соответствуют прямым восхождениям 0, 90, 180 и 270°, и небесный экватор со шкалой прямых восхождений через каждые 10°. Два круга склонений имеют шкалу через 10°. По краю овального выреза нанесены риски, показывающие положение точек севера, юга, востока и запада, а также шкала азимутов через 30°.



В дугообразном вырезе накладного листа видна шкала на 365 делений с оцифровкой по дням и месяцам года, нанесенная на вращающейся карте. По краю дугообразного выреза нанесены деления часов и десятков минут, приходящихся на ночное время. Если, вращая карту, совместить деление заданного дня с делением заданного часа наблюдения по местному времени, то в овальном вырезе будет видна картина звездного неба, соответствующая заданному моменту наблюдения по местному гражданскому времени.

Для удобства пользования БКН издана для различных широт Северного полушария: БКН-I - для 37° (от 30 до 44°); БКН-II -для 53° (от 46 до 60°) и БКН-III -для 69° (от 62 до 72°). Они отличаются друг от друга размерами и конфигурацией овального выреза, ограничивающего видимую часть звездного неба для выбранной широты.

Для меньших северных широт и для южных широт существуют специальные карты неба.

Перед тем как пользоваться бортовой картой неба, необходимо нанести на изображение видимой части неба положение планет. Как было сказано выше, положение планет среди звезд непостоянно, они блуждают по звездному небу, и поэтому их невозможно заранее, вместе со звездами, нанести на карту. Наносить же их следует не только тогда, когда мы собираемся их наблюдать, но и каждый раз перед тем, как пользоваться БКН. Ведь появление планеты в каком-то созвездии несколько меняет его общий вид и этим может затруднить отыскание и опознавание нужных аэронавигационных звезд.

При ориентировании карты ее следует держать примерно вертикально перед собой, совмещая обозначения точек горизонта с соответствующими им фактическими направлениями стран света.

При помощи БКН можно не только получить вид звездного неба для заданного момента времени (месяца, дня и часа), но и решать следующие задачи.

1. Наметить на земле, до полета, звезды, по которым наиболее удобно производить навигационные определения в воздухе. Для этого карту устанавливают на заданный момент местного времени и по видимому положению звезд в овале БКН в зависимости от курса полета выбирают для измерений наиболее удобные аэронавигационные звезды. Для большей точности астрономических навигационных определений по нескольким звездам выбирают такие из них, разность азимутов между которыми близка к 90°.

2. Определить горизонтальные и экваториальные координаты светил. Для определения экваториальных координат надо карту установить на заданный момент времени и отсчитать: часовой угол - по дуге экватора от южной части небесного меридиана до круга склонения светила, т. е. до прямой, проходящей через полюс мира и светило; склонение- по кругу склонения от небесного экватора до светила.

Для определения горизонтальных координат надо обозначить зенит в центре овала. Положение светила между линией горизонта (краем овального выреза) и зенитом характеризует высоту светила. Величина азимута отчитывается по краю овального выреза от точки севера в восточном направлении до вертикала (прямая на карте, соединяющая светило с зенитом); высота - по вертикалу от горизонта до светила.

3. Определить моменты восхода и захода светил в определенный день. Для этого вращением карты изображение данного светила устанавливают под обрез овала в восточной части, если нужно определить восход светила, или в западной, если нужно определить заход светила. На дугообразном вырезе против заданной даты можно прочесть момент восхода (захода) светила по местному времени.

4. Определить моменты кульминаций светил. Для этого изображение светила устанавливается на небесный меридиан по линии С-Ю между полюсом и точкой юга, если нужно определить верхнюю кульминацию, или между полюсом и, точкой севера, если нужно определить нижнюю кульминацию. На дугообразном вырезе против заданной даты можно прочесть момент кульминации по местному времени.

<<< Назад
Вперед >>>

Для применения астрономических приборов необходимо уметь безошибочно находить на небесной сфере нужные звезды и планеты.

Наблюдая звездное небо, нельзя не заметить большого разнообразия звезд. Многие звезды выделяются своей яркостью или цветом. Среди большого множества звезд выделяются отдельные группы звезд, имеющие характерные очертания и называемые созвездиями.

Созвездия, участвуя в суточном вращении небесной сферы, сохраняют свое взаимное расположение друг относительно друга и очертания характерных фигур. Наличие таких особенностей позволяет легко ориентироваться среди тысяч звезд, несмотря на кажущуюся хаотичность в их расположении. Наиболее характерными признаками, по которым отыскиваются навигационные звезды, являются конфигурации созвездий, взаимное расположение и видимая яркость звезд.

Для того чтобы найти на небе нужную звезду, сначала находят созвездие, которому она принадлежит, а затем, зная расположение нужной звезды в данном созвездии и ее видимую яркость, отыскивают звезду. Наиболее яркие звезды в созвездиях служат надежными ориентирами для нахождения более слабых звезд.

По решению Международного астрономического союза все небо разделено на 88 участков-созвездий, из которых более 60 могут быть видимы с территории СССР. Каждое из созвездий имеет название. Большинство созвездий получили названия в глубокой древности и связаны с легендами и мифами.

Яркие звезды каждого созвездия обозначаются буквами греческого алфавита, как правило, в порядке уменьшения их видимой яркости. Самая яркая звезда в созвездии обозначается буквой а, следующая за ней по яркости - буквой (3 и т. д. В некоторых созвездиях такой порядок обозначения звезд нарушается. Наиболее яркие звезды созвездий, кроме буквенных обозначений, имеют собственные названия. Так, например, звезда а созвездия Лиры называется Вега, звезда созвездия Ориона называется Ригель.

В Северном и Южном полушариях используются определенные навигационные звезды, для которых составлены таблицы высот и азимутов.

Навигационные звезды, используемые в Северном полушарии, приведены в табл. 2.1.

Отыскание нужных для наблюдений звезд проще всего производить от опорных созвездий, имеющих знакомые всем очертания. Наиболее выразительные созвездия служат отправными пунктами, позволяющими переходить от них к соседним созвездиям и звездам.

Таблица 2.1. Навигационные звезды, используемые в Северном полушарии

Отыскание навигационных звезд, видимых в Северном полушарии, производится по следующим правилам. Звездное небо условно делится на три участка (рис. 2.1).

На первом участке неба расположены созвездия Большой Медведицы, Малой Медведицы, Волопаса, Девы, Скорпиона и Льва.

Общеизвестным созвездием на этом участке является созвездие Большой Медведицы. От него начинают отыскание других созвездий. Семь наиболее ярких звезд этого созвездия образуют характерную фигуру ковша с ручкой, самую запоминающуюся фигуру на звездном небе. Третья звезда от конца ручки является навигационной звездой Алиот. Следует иметь в виду, что ручка ковша вследствие вращения звездного неба в разное время имеет различное направление к линии горизонта.

Для отыскания Полярной звезды нужно мысленно провести прямую через две крайние звезды ковша созвездия Большой Медведицы в направлении внешней части ковша, а затем на этой линии отложить пять расстояний между указанными звездами. В конце отложенного расстояния обнаружится Полярная, наиболее яркая звезда, входящая в созвездие Малой Медведицы. Семь звезд этого созвездия образуют малый ковш с ручкой, на конце которой располагается Полярная звезда. Эта звезда очень важная из-за своего особого положения на небе. Она почти точно совпадает с полюсом мира, и поэтому по ней всегда можно указать направление на север и определить широту места наблюдателя. Большинство звезд малого ковша слабые.

Рис. 2. 1. Правила отыскания навигационных звезд в Северном полушарии

Среди них выделяются только две крайние звезды ковша. Их называют «стражами» полюса, так как они ходят вокруг полюса, как часовые.

Для отыскания навигационных звезд Арктур и Спика необходимо продолжить взглядом дугообразную линию ручки ковша Большой Медведицы. Сначала эта линия пройдет через созвездие Волопаса, имеющее форму парашютного значка, в которое входит звезда Арктур, самая яркая не только в этом созвездии, но и на всем первом участке неба. Арктур очень заметная звезда с оранжевым оттенком. Дальше на продолжении дугообразной линии находится единственная яркая звезда Спика, входящая в большое созвездие Девы, которое состоит преимущественно из слабых звезд.

Чтобы найти звезду Антарес созвездия Скорпиона, нужно провести прямую линию через звезды ручки ковша Большой Медведицы. Эта линия пройдет мимо хорошо видимого серпообразного созвездия Северной Короны.

На расстоянии примерно в два раза большем, чем расстояние от ковша Большой Медведицы до Северной Короны, расположена звезда Антарес.

Для отыскания звезды Регул нужно провести прямую линию через две звезды ковша Большой Медведицы, ближайшие к ручке, в направлении, противоположном Полярной звезде. Отложив на этой линии расстояние, примерно в 1,5 раза больше, чем расстояние от Большой Медведицы до Полярной звезды, отыскивают звезду Регул созвездия Льва, имеющего фигуру трапеции.

На втором участке неба находятся созвездия Ориона, Тельца, Возничего, Близнецов, Малого Пса и Большого Пса. На этом участке опорным созвездием является созвездие Ориона, которое почти также общеизвестно, как и созвездие Большой Медведицы. Это созвездие очень богато яркими звездами. Столько ярких звезд нет ни в одном другом созвездии: пять звезд второй звездной величины и две первой. Четыре его яркие звезды образуют трапецию, внутри которой расположены рядом три тоже яркие звезды, носящие название пояса Ориона. Две самые яркие звезды этого созвездия, находящиеся в противоположных углах трапеции, являются навигационными.

Звезда, которая находится ближе к Полярной, называется Бетельгейзе, а противоположная ей - Ригель. Бетельгейзе красная звезда, а Ригель белая.

На продолжении спиральной линии, начатой в поясе Ориона, в направлении против хода часовой стрелки последовательно расположены звезды Альдебаран (а Тельца), Капелла (а Возничего), Поллукс ( Близнецов), Процион (а Малого Пса) и Сириус (а Большого Пса) - самая яркая звезда всего неба.

На третьем участке неба расположены созвездия Лиры, Кассиопеи, Лебедя, Орла, Пегаса, Андромеды, Овна и Южной Рыбы. На этом участке выделяется созвездие Кассиопеи и блестящая звезда Вега созвездия Лиры. Звезда Вега является самой яркой звездой третьего участка неба.

Созвездие Кассиопеи, имеющее очертание латинской буквы W, хотя и не содержит навигационной звезды, но зато является характерным ориентиром.

Вега находится на продолжении прямой линии, проведенной через две звезды у основания ручки ковша Большой Медведицы в сторону, противоположную Регулу. Рядом с Вегой четыре слабые звезды маленького созвездия Лиры образуют характерную фигуру параллелограмма.

Вблизи созвездия Лиры расположены созвездия Лебедя и Орла. Наиболее яркие звезды созвездия Лебедя образуют фигуру креста, известную под названием Северный Крест, в вершине которого выделяется яркая звезда Денеб.

Созвездие Орла напоминает фигуру самолета. Его самая яркая звезда является навигационной звездой Альтаиром. Альта-ир, Вега и Денеб образуют большой летний треугольник, известный всем штурманам.

Если провести прямую линию через две крайные звезды ковша Большой Медведицы и Полярную, то она пройдет через созвездие Пегаса. Группа звезд созвездий Пегаса и Андромеды образуют ковш, который значительно больше ковша Большой Медведицы. У основания ручки этого ковша расположена звезда Альферац (а Андромеды). В ясную и безлунную ночь недалеко от звезды Альферац в сторону созвездия Кассиопеи можно увидеть туманность Андромеды - ближайшую к нам галактику.

Чтобы найти звезду Фомальгаут созвездия Южной Рыбы, нужно продолжить прямую линию, идущую от Полярной через созвездие Пегаса.

Для отыскания звезды Хамаль, входящей в созвездие Овна, нужно провести прямую линию от Полярной звезды мимо легко опознаваемого созвездия Кассиопеи в сторону созвездия Андромеды, вблизи которого и расположена звезда Хамаль.

При полетах в Южном полушарии используется 24 навигационные звезды, из которых 16 те же, что применяются в Северном полушарии и 8 дополнительных: Хамаль (а Овна), Канопус (а Арго), Ахернар (а Эридана), Пикок (а Павлина), Южного Креста, а Центавра, а Южного Треугольника и 8 Стрельца.

В Южном полушарии из общего количества навигационных звезд не используются только две - Полярная и Бетельгейзе.

Навигационные звезды, расположенные в Южном полушарии, начинают обычно отыскивать от легко опознаваемой группы созвездий Киль, Корма, Компас и Паруса, которые раньше входили в одно большое созвездие Корабль Аргонавтов (рис. 2.2).

В созвездии Киля выделяется желтая звезда Канопус, которая по яркости уступает лишь только Сириусу. Яркие звезды Сириус, Канопус и Ригель образуют треугольник, который выделяется при первом взгляде на небо.

Известным созвездием Южного полушария является также знаменитое созвездие Южного Креста. Его более длинная перекладина почти точно указывает на Южный полюс мира, который в отличие от Северного полюса мира не отмечен никакой звездой. Созвездие Южного Креста небольшое, но состоит из ярких звезд. Наиболее яркая звезда является навигационной.

В этой же части неба расположена большая и выразительная группа звезд, входящих в созвездие Центавра. В этом созвездии выделяются две звезды, расположенные на небольшом удалении друг от друга. Навигационной является а Центавра, которая более яркая. Недалеко от этой звезды расположено приметное созвездие Южный Треугольник с навигационной звездой а.

К числу созвездий, имеющих хорошо заметные конфигурации и содержащих яркие звезды, относятся Павлин и Стрелец. В созвездии Павлина находится навигационная звезда Пикок, а в созвездии Стрельца - звезда . Эти звезды с навигационной звездой а Южного Треугольника образуют легко различимый треугольник. Эти три звезды имеют примерно одинаковую яркость и выделяются в этой части неба среди более слабых звезд.

Рис. 2.2. Правила отыскания навигационных звезд в Южном полушарии

Очень большую часть неба Южного полушария занимает большое, но слабое и бесформенное созвездие Эридан. Оно простирается по одной из самых пустынных областей неба. Его единственная яркая звезда Ахернар является навигационной. В связи с тем, что в данной части неба, кроме звезды Ахернар, нет других ярких звезд, приходится использовать звезду Хамаль, расположенную в Северном полушарии вблизи экватора, хотя она и не очень яркая.

Почти все перечисленные навигационные звезды расположены на одной дугообразной линии, идущей вокруг Южного полюса мира.

Чтобы овладеть рассмотренными правилами отыскания навигационных звезд, необходимо не только изучать их, но и провести ряд тренировок по применению этих правил непосредственно на звездном небе.

Наиболее рациональным способом изучения звездного неба является изучение его в планетарии, где можно имитировать вид звездного неба для любого времени суток и разных широт. Каждый штурман должен натренировать себя так, чтобы находить нужные созвездия и звезды не только при видимости всего неба, но и отдельных его участков. Для безошибочного отыскания и опознавания навигационных звезд, кроме особенностей конфигураций созвездий и взаимного расположения их, нужно учитывать цвет и звездные величины отыскиваемых звезд и звезд, расположенных рядом.

Все рассмотренные навигационные звезды могут быть использованы для самолетовождения. Однако следует иметь в виду, что возможность их видимости на небе зависит от широты места наблюдения, времени года и суток.

В середине ночи доступны наблюдению те созвездия, которые находятся в части неба, противоположной Солнцу. Зная даты нахождения Солнца в основных точках эклиптики, можно по картам звездного неба, прилагаемым к ААЕ, легко определить созвездия, расположенные на ночной стороне звездного неба, видимые в данное время года.

Отыскание планет производится по другим правилам, чем отыскание звезд, так как у них нет постоянного места на небе. Они непрерывно блуждают среди звезд. Из четырех планет, используемых для самолетовождения, обычно бывает видна одна, часто - две, иногда - три, а случается, что и все четыре одновременно. Планеты всегда наблюдаются вблизи эклиптики, которую легче всего найти на небе по навигационным звездам Антаресу, Сгшке, Регулу и Альдебарану (см. рис. 2.1). Эти звезды расположены почти на эклиптике и часто две или даже три бывают видны одновременно. Недалеко от линии, проходящей через указанные звезды, наблюдается одна или две планеты.

Положение планет, применяемых для самолетовождения, на дату наблюдения определяют по специальным схемам, прилагаемым к ААЕ. Зная, в какой части неба расположены планеты, их всегда легко узнать по ровному немерцающему свету и яркости. Этим они отличаются от звезд.

Венера по яркости намного превосходит все звезды. Она светит серебристо-белым светом. Наблюдается после захода Солнца или перед его восходом. При максимальном удалении от Солнца она заходит не позднее чем через 3-4 часа после заката Солнца или восходит не ранее чем за 3-4 часа до восхода Солнца.

Марс легко узнать по красноватому оттенку. Яркость Марса сильно меняется в зависимости от его расстояния до Земли. Иногда он значительно ярче Сириуса, а иногда его яркость ослабевает до второй звездной величины и он наблюдается как Полярная.

Юпитер имеет желтоватый цвет. Он менее ярок, чем Венера, но тоже светит ярче всех звезд.

Сатурн по яркости слабее Юпитера. Его видимая яркость примерно равна яркости звезд первой величины. Он, как и Юпитер, имеет желтоватый цвет. Возможность видимости планет зависит от их положения относительно Солнца. Если планета находится поблизости или в том же созвездии, что и Солнце, то дневной свет не позволит наблюдать ее. Поэтому при выборе планет для самолетовождения всегда необходимо учитывать взаимное положение планет и Солнца.

Рассмотрим на примере, как узнать, какие созвездия и планеты будут наблюдаться в данную ночь, как отыскать и опознать нужную звезду. Дата полета 5 января 1975 г. Время использования астрономических средств с 22 до 24 ч. Географическая широта наблюдателя 50° с.

Известно, что видимая картина звездного неба зависит от положения Солнца на эклиптике. По ежедневным таблицам ААЕ находим, что 5 января прямое восхождение Солнца равно 286°. Используя приложение 3, определяем, что Солнце в указанную дату находится в созвездии Стрельца. Поэтому это созвездие и созвездия соседние с ним будут находиться на небе днем. В обычных условиях увидеть их нельзя. Ночью будут видны те созвездия, которые расположены в диаметрально противоположной Солнцу части неба, т. е. созвездия, прямое восхождение которых отличается на 180° от прямого восхождения Солнца. Это будут созвездия Близнецов, Возничего, Тельца, М. Пса и Ориона.

Пусть требуется отыскать навигационную звезду Поллукс. Эта звезда входит в созвездие Близнецов, характерное своими двумя яркими звездами - Поллуксом и Кастором. Чтобы не перепутать их, нужно посмотреть в таблицу, приведенную в ААЕ, и узнать, какие звездные величины имеют данные звезды. Звездная величина Поллукса 1,21, а Кастора 1,99-2,85. По этим данным видим, что звезда Поллукс ярче звезды Кастор. Кроме того, известно, что Поллукс желтая звезда, а Кастор белая. И, наконец, звезда Поллукс находится ближе к созвездию М. Пса, чем звезда Кастор. Все указанные выше особенности помогают отыскать и безошибочно опознать звезду Поллукс.

По схемам, приведенным в ААЕ, узнаем, что 5 января в созвездии Близнецов находится планета Сатурн. Зная склонение этой планеты и звезды Поллукс, а также широту места наблюдателя, находим, что высота указанных светил в момент их кульминации не превышает 70°. Следовательно, они удобны для наблюдения для данных в примере условий.


«Существует лишь один безошибочный способ определения места и направления пути судна в море - астрономический, и счастлив тот, кто знаком с ним!», - этими словами Христофора Колумба мы открываем цикл очерков - уроков астронавигации.

Морская астронавигация зародилась в эпоху великих географических открытий, когда «на деревянных кораблях плавали железные люди», к на протяжении веков впитала опыт многих поколений мореплавателей. За последние десятилетия она обогатилась новыми измерительными и вычислительными средствами, новыми-методами решения навигационных задач; недавно появившиеся спутниковые навигационные системы по мере их дальнейшего развития сделают все трудности судовождения достоянием истории. Роль морской астронавигации (от греческого астрой - звезда) остается исключительно важной и в наши дни. Цель нашей серии очерков - познакомить судоводителей-любителей с доступными в условиях яхтенного плавания современными способами астрономического ориентирования, которые чаще всего используются в открытом море, но могут быть применены и в тех случаях прибрежного плавания, когда береговые ориентиры не видны или их не удается опознать.

Наблюдения небесных ориентиров (звезд, Солнца, Луны и планет) позволяют мореплавателям решать три основные задачи (рис. 1):

  • 1) измерять время с достаточной для приближенного ориентирования точностью;
  • 2) определять направление движения судна даже при отсутствии компаса и поправку компаса, если он имеется;
  • 3) определять точное географическое место судна и контролировать правильность его пути.
Необходимость решения этих трех задач на яхте возникает вследствие неизбежных погрешностей в счислении ее пути по показаниям компаса и лага (или приближенно определяемой скорости). Большой дрейф яхты, достигающий при сильном ветре 10-15°, однако оцениваемый лишь глазомерно; непрерывно изменяющаяся скорость движения; управление «:по парусам» при следовании в бейдевинд, лишь с последующим фиксированием компасных курсов; влияние переменных течений; большое количество поворотов при лавировке, - это далеко не полный перечень причин, осложняющих навигацию на яхте! Если счисление не контролируется по наблюдениям светил, погрешность в счислимом месте даже у опытных яхтсменов может превысить несколько десятков миль. Ясно, что столь большая погрешность угрожает безопасности мореплавания, может привести к большим потерям ходового времени.

В зависимости от применяемых мореходных инструментов, пособий и вычислительных средств точность решения астронавигационных задач будет различной. Для возможности их решения в полном объеме и с вполне достаточной для плавания в открытом море точностью (погрешность места - не более 2-3 миль, в поправке компаса - не более 1°) необходимо иметь:

  • навигационный секстан и хорошие влагозащищенные часы (лучше электронные или кварцевые);
  • транзисторный радиоприемник для приема сигналов времени и микрокалькулятор типа «Электроника» (этот микрокалькулятор должен иметь ввод углов в градусной мере, обеспечивать вычисление прямых и обратных тригонометрических функций, выполнять все арифметические операции; наиболее удобна «Электроника» БЗ-34); при отсутствии микрокалькулятора можно пользоваться математическими таблицами или специальными таблицами «Высоты и азимуты светил» («ВАС-58»), изданными Главным управлением навигации и океанографии;
  • морской астрономический ежегодник (МАЕ) или другое пособие для расчета координат светил.
Широкое распространение электронных часов, транзисторных радиоприемников и микрокалькуляторов сделало применение астрономических методов навигации доступным самому широкому кругу лиц без специальной штурманской подготовки. Неслучайно отмечается непрерывный рост спроса на морские астрономические ежегодники; это служит лучшим доказательством популярности астронавигации среди всех категорий мореплавателей и в первую очередь - среди моряков-любителей.

При отсутствии на судне какого-либо из перечисленных выше средств астронавигации сама возможность астронавигационного ориентирования сохраняется, но понижается его точность (оставаясь, однако, вполне удовлетворительной для многих случаев плавания на яхте). Кстати сказать, некоторые инструменты и вычислительные средства настолько просты, что могут быть изготовлены самостоятельно.

Астронавигация - это не только наука, но и искусство - искусство наблюдать светила в морских условиях и безошибочно выполнять вычисления. Пусть первоначальные неудачи вас не разочаровывают: немного терпения и появятся необходимые навыки, а вместе с ними придет высокое удовлетворение искусством плавания вне видимости берегов.


Все методы астронавигации, которые вы будете осваивать, многократно проверены на практике, они уже не раз сослужили хорошую службу морякам в самых критических ситуациях. Не откладывайте их освоение «на потом», овладевайте ими при подготовке к плаванию; успех похода решается на берегу!

Астронавигация, как и вся астрономия, - наука наблюдательная. Ее законы и методы выведены из наблюдений видимого движения светил, из зависимости между географическим местом наблюдателя и видимыми направлениями на светила. Поэтому изучение астронавигации мы и начнем с наблюдений светил - научимся их опознавать; попутно ознакомимся с необходимыми нам в дальнейшем началами сферической астрономии.

Небесные ориентиры

1. Навигационные звезды . Ночью при ясном небе мы наблюдаем тысячи звезд, однако в принципе каждую из них можно опознать, основываясь на ее расположении в группе соседних звезд - ее видимом месте в созвездии, на ее видимом блеске (яркости) и цвете.

Для ориентирования на море применяются лишь наиболее яркие звезды, их называют навигационными. Чаще всего наблюдаемые навигационные звезды перечислены в табл. 1; полный же каталог навигационных звезд имеется в МАЕ.


Картина звездного неба неодинакова в различных географических районах, в разные сезоны года и в разное время суток.

Приступая к самостоятельному поиску навигационных звезд в северном полушарии Земли, при помощи компаса определите направление на точку Севера, расположенную на горизонте (обозначена буквой N на рис. 2). Над этой точкой на угловом расстоянии, равном географической широте вашего места φ, расположена звезда Полярная - самая яркая среди звезд созвездия Малой Медведицы, образующих фигуру ковша с изогнутой ручкой (Малого Ковша). Полярную обозначают греческой буквой «альфа» и именуют α Малой Медведицы; она уже несколько столетий используется мореплавателями в качестве основного навигационного ориентира. При отсутствии компаса направление на север легко определяется как направление на Полярную.

В качестве масштаба для грубого измерения угловых расстояний на небосводе можно применять угол между направлениями от вашего глаза на кончики большого и указательного пальцев вытянутой руки (рис. 2); это примерно 20°.

Видимый блеск звезды характеризуется условным числом, которое называют звездной величиной и обозначают буквой m . Шкала звездных величин имеет вид:


Блеск m = 0 имеет наблюдаемая летом самая яркая звезда северного звездного неба - Вега (α Лиры) . Звезды первой величины - с блеском m = 1 в 2,5 раза слабее по яркости, чем Вега. Полярная имеет звездную величину около m = 2; это значит, что ее блеск примерно в 2,5 раза слабее блеска звезд первой величины или в 2,5 X 2,5 = 6,25 раза слабее блеска Веги, и т. п. Невооруженным глазом можно наблюдать только звезды ярче m
Звездные величины указаны в табл. 1; там же указан и цвет звезд. Надо, однако, учитывать, что цвет воспринимается людьми субъективно; кроме того, по мере приближения к горизонту блеск звезд заметно ослабевает, а их цвет смещается в красную сторону (из-за поглощения света в земной атмосфере). При высоте над горизонтом менее 5° большинство звезд вообще исчезает из видимости.

Земная атмосфера наблюдается нами в форме небесного свода (рис. 3), приплюснутого над головой. В морских условиях ночью расстояние до горизонта кажется примерно в два раза большим, чем расстояние до расположенной над головой точки зенита Z (от арабского замт - верх). Днем видимая приплюснутость небосвода может возрасти в полтора-два раза в зависимости от облачности и времени суток.

Вследствие очень больших расстояний до небесных светил они представляются нам равноудаленными и расположенными на небосводе. По этой же причине взаимное расположение звезд на небосводе изменяется очень медленно - наше звездное небо мало чем отличается от звездного неба Древней Греции. Лишь ближайшие к нам небесные тела - Солнце, планеты, Луна заметно перемещаются на фойе созвездий - фигур, образованных группами взаимонеподвижных звезд.

Сплюснутость небосвода приводит к искажению глазомерной оценки величины видимой высоты светила - вертикального угла h между направлением на горизонт и направлением на светило. Эти искажения особенно велики при малых величинах высот. Итак, еще раз отметим: наблюдаемая высота светила всегда больше истинной его высоты.

Направление на наблюдаемое светило определяется его истинным пеленгом ИП - углом в плоскости горизонта между направлением на Север и линией пеленга светила ОД, которая получается пересечением проходящей через светило вертикальной плоскости и плоскости горизонта. ИП светила измеряется от точки Севера по дуге горизонта в сторону точки Востока в пределах 0°-360°. Истинный пеленг Полярной равен 0° с погрешностью не более 2°.

Опознав Полярную, найдите на небосводе созвездие Большой Медведицы (см. рис. 2), которое иногда называют Большой Ковш: оно расположено на расстоянии 30°-40 от Полярной, причем все звезды этого созвездия - навигационные. Если вы научились уверенно опознавать Большую Медведицу, то сможете находить Полярную без помощи компаса - она находится по направлению от звезды Мерак (см. табл. 1) на звезду Дубге на удалении, равном 5 расстояниям между этими звездами. Симметрично Большой Медведице (относительно Полярной) расположено созвездие Кассиопеи с навигационными звездами Кафф (β) и Шедар (α). В морях, омывающих берега СССР, все упомянутые нами созвездия ночью видны над горизонтом.

Отыскав Большую Медведицу и Кассиопею, нетрудно опознать расположенные вблизи них другие созвездия и навигационные звезды, если воспользоваться картой звездного неба (см. рис. 5). При этом полезно знать, что дуга на небосводе между звездами Дубге и Беветнаш приближенно равна 25°, а между звездами β и ε Кассиопеи - около 15°; эти дуги также можно применять в качестве масштаба для приближенной оценки угловых расстояний на небе.

В результате вращения Земли вокруг своей оси наблюдается видимое нами вращение небосвода в сторону Запада вокруг направления на Полярную; каждый час звездное небо поворачивается на 1 ч = 15°, каждую минуту на 1 м = 15", а за сутки на 24 ч = 360°.

2. Годовое движение Солнца на небосводе и сезонные изменения вида звездного неба . В течение года Земля совершает в космическом пространстве один полный оборот вокруг Солнца. Направление с движущейся Земли на Солнце по этой причине непрерывно изменяется; Солнце описывает показанную на звездной карте (см. вкладку) пунктирную кривую, которую называют эклиптикой.

Видимое место Солнца совершает по эклиптике собственное годовое движение в направлении, противоположном видимому суточному вращению звездного неба. Скорость этого годового движения невелика и равна И/сутки (или 4 м/сутки). В разные месяцы Солнце проходит различные созвездия, образующие на небе зодиакальный пояс («круг животных»). Так, в марте Солнце наблюдается в созвездии Рыб , а далее последовательно в созвездиях Овна, Тельца, Близнецов, Рака, Льва, Девы, Весов, Скорпиона, Стрельца, Козерога, Водолея.

Созвездия, расположенные на одной полусфере с Солнцем, засвечиваются им и днем не видны. В полночь на юге видны созвездия, отстоящие от места Солнца в данную календарную дату на 180° = 12 ч.

Совокупность быстрого видимого суточного движения звезд и медленного годового движения Солнца приводит к тому, что наблюдавшаяся сегодня в данный момент картина звездного неба завтра будет видна на 4 м раньше, через 15 суток - на


раньше, через месяц - на 2 часа раньше, и т. д,

3. Географическое и видимое место светила. Карта звездного неба. Звездный глобус . Наша Земля имеет сферическую форму; теперь это наглядно доказывается ее снимками, выполненными космическими станциями.

В навигации полагают, что Земля имеет форму правильного шара, на поверхности которого место яхты определяют две географические координаты:

Географическая широта φ (рис. 4) - угол между плоскостью земного экватора eq и направлением отвесной линии (направлением силы тяжести) в точке наблюдений О. Этот угол измеряется дугой географического меридиана места наблюдателя (кратко - местного меридиана) еО от плоскости экватора в сторону ближайшего к месту наблюдений полюса Земли в пределах 0°-90°. Широта может быть северной (положительной) или южной (отрицательной). На рис. 4 широта места О равна φ = 43° N. Широта определяет положение географической параллели - малого круга, параллельного экватору.

Географическая долгота λ - угол между плоскостями начального географического меридиана (согласно международному соглашению он проходит через Гринвичскую обсерваторию в Англии - Г на рис. 4) и плоскостью местного меридиана наблюдателя. Этот угол измеряется дугой земного экватора е гр е в сторону Востока (или Запада) в пределах 0°-180°. На рис. 4 долгота места равна λ = 70° O st . Долгота определяет положение местного меридиана.

Направление местного меридиана в точке наблюдений О определяется направлением солнечной тени в полдень от отвесно установленного шеста; в полдень эта тень имеет кратчайшую длину, на горизонтальной площадке она образует полуденную линию N-S (см. рис. 3). Любой местный меридиан проходит через географические полюсы Р n и P s , а его плоскость - через ось вращения Земли P n P s и отвесную линию OZ.

Луч света от удаленного светила * приходит в центр Земли по направлению *Ц, пересекая земную поверхность в какой-то точке σ. Представим себе, что из центра Земли произвольным радиусом описана вспомогательная сфера (небесная сфера). Этот же луч пересечет небесную сферу в точке σ". Точку σ называют географическим местом светила (ГМС), а точку σ" - видимым местом светила на сфере. По рис. 4. видно, что положение ГМС определяют географическая шпрота φ* и географическая долгота λ*.

Аналогично определяется положение видимого места светила на небесной сфере:

  • дуге меридиана ГМС φ* равна дуга δ небесного меридиана, проходящего через видимое место светила; эта координата па сфере называется склонением светила, оно измеряется так же, как широта;
  • дуга земного экватора λ* равна дуге t гр небесного экватора; на сфере эта координата называется гринвичским часовым углом, он измеряется так же, как долгота, или, в круговом счете - всегда в сторону Запада, в пределах от 0° до 360°.
Координаты δ и t гр называют экваториальными; их тождественность с географическими еще более видна, если предположить, что на рис. 4 радиус небесной сферы будет равен радиусу земного шара.

Положение меридиана видимого места светила на небесной сфере можно определить не только относительно небесного гринвичского меридиана. Примем за начало отсчета ту точку небесного экватора, в которой Солнце видно 21 марта. В этот день начинается весна для северного полушария Земли, день равен ночи; упомянутая точка именуется точкой Весны (или точкой Овна) и обозначается знаком Овна - ♈, как показано на звездной карте.

Дуга экватора от точки Весны до меридиана видимого места светила, считаемая в сторону видимого суточного движения светил от 0° до 360°, называется звездным углом (или звездным дополнением) и обозначается τ*.

Дуга экватора от точки Весны до меридиана видимого места светила, считаемая в сторону собственного годового движения Солнца по небесной сфере, называется прямым восхождением α (на рис. 5 оно дано в часовой мере, а звездный угол - в градусной мере). Координаты навигационных звезд показаны в табл. 1; очевидно, что, зная τ°, всегда можно найти


и наоборот.

Дуга небесного экватора от местного меридиана (его полуденной части P n ZEP s) до меридиана светила называется местным часовым углом светилам обозначается t. По рис. 4 видно, что всегда t отличается от t гр на величину долготы места наблюдателя:


при этом восточная долгота прибавляется, а западная - вычитается, если t гр взят в круговом счете.

Вследствие видимого суточного движения светил их часовые углы непрерывно изменяются. Звездные углы по этой причине не изменяются, так как начало их отсчета (точка Весны) вращается вместе с небосводом.

Местный часовой угол точки Весны называют звездным временем; оно всегда измеряется в сторону Запада от 0° до 360°. Глазомерно его можно определить по положению на небосводе меридиана звезды Кафф (β Кассиопеи) относительно местного небесного меридиана. По рис. 5 видно, что всегда


Потренируйтесь в глазомерном определении экваториальных координат δ и t наблюдаемых вами на небосводе светил. Для этого по Полярной определите положение на горизонте точки Севера (рис. 2 и 3), затем найдите точку Юга. Вычислите дополнение широты вашего места Θ = 90° - φ (например, в Одессе Θ = 44°, а в Лениграде Θ = 30°). Полуденная точка экватора Е расположена над точкой Юга на угловом расстоянии, равном Θ; она всегда является началом отсчета часового угла. Экватор на небосводе проходит через точку Востока, точку Е и точку Запада.

Полезно знать, что при δ N > 90° - φ N светило в северном полушарии Земли всегда движется над горизонтом, при δ 90° - φ N оно не наблюдается.

Механической моделью небесной сферы, воспроизводящей вид звездного неба и все рассмотренные выше координаты, является звездный глобус (рис. 6). Этот навигационный прибор очень полезен в дальнем плавании: при его помощи можно решать все задачи астронавигационного ориентирования (при угловой погрешности результатов решения не более 1,5-2° или при погрешности во времени не более 6-8 мин. Перед работой глобус устанавливают по широте места наблюдений (показано на рис. 6) и по местному звездному времени t γ . правила вычисления которого на срок наблюдений будут пояснены далее.

При желании упрощенный звездный глобус можно изготовить из школьного глобуса, если нанести на его поверхность видимые места звезд, руководствуясь табл. I и картой звездного неба. Точность решения задач на таком глобусе будет несколько ниже, но достаточна для многих случаев ориентирования по направлению движения яхты. Заметим также, что звездная карта дает прямое изображение созвездий (так, как их видит наблюдатель), а на звездном глобусе видны их обратные изображения.

Опознавание навигационных звезд

Из бесчисленного числа звезд невооруженным глазом легко наблюдаются всего лишь около 600, показанных на карте звездного неба в Морском Астрономическом Ежегоднике. Эта карта дает обобщенную картину того, что вообще может наблюдать мореплаватель на темном ночном небе. Для ответа на вопрос, где и как искать те или иные навигационные звезды в определенном географическом районе, служат приводимые ниже (рис. 1-4) сезонные схемы звездного неба: они охватывают вид звездного неба для всех морей страны и составлены на основе звездной карты МАЕ; на них указаны положение и собственные имена всех 40 навигационных звезд, упомянутых в таблице в предыдущем очерке.

Каждая схема соответствует вечерним наблюдениям в определенное время года: весной (рис. 1), летом (рис. 2), осенью (рис. 3), и зимой (рис. 4) либо - утренним наблюдениям весной (рис. 2), летом (рис. 3), осенью (рис. 4) и зимой (рис. 1). Каждая сезонная схема может быть использована и в другое время года, но уже в другое время суток.

Для выбора подходящей к намеченному времени наблюдений сезонной схемы служит табл. 1. Входить в эту таблицу надо по ближайшей к намеченной вами календарной дате наблюдений и так называемому «меридианному» времени суток Т М.

Меридианное время с допустимой погрешностью не более получаса можно просто получить, уменьшив принятое на территории СССР с 1981 г. зимнее время на 1 час, а летнее время - на 2 часа. Правила расчета Т морских условиях по принятому на борту яхты судовому времени поясняются в приводимом ниже примере. В двух нижних строках таблицы для каждой сезонной схемы указаны соответствующее ей звездное время t М и отсчет звездного угла τ К по шкалам звездной карты МАЕ; эти величины позволяют определить, какой из меридианов звездной карты в намеченное время наблюдений совпадает с меридианом вашего географического места.

При первоначальном освоении правил опознавания навигационных звезд необходимо подготовиться к наблюдениям заранее; используются и карта звездного неба, и сезонная схема. Ориентируем звездную карту на местности; от точки юга на горизонте по небосводу в сторону северного полюса мира расположится тот меридиан экваториальной звездной карты, который оцифрован величиной t М, т. е. для наших сезонных схем - 12 Ч, 18 Ч, 0(24) Ч и 6 Ч. Этот меридиан и показан пунктиром на сезонных схемах. Полуширина каждой из схем составляет примерно 90° = 6 Ч; поэтому, спустя в часов вследствие вращения звездного неба к западу пунктирный меридиан сместится к левой кромке схемы, а ее центральные созвездия - к правой.

Экваториальная карта охватывает звездное небо между параллелями 60° N и 60° S, но не все показанные на ней звезды обязательно будут видны в вашей местности. Над головой, вблизи зенита, видны те созвездия, у которых склонения звезд близки по величине к широте места (и «одноименны» с ней). Например, в широте φ = 60° N при t М = 12 Ч над головой располагается созвездие Большой Медведицы. Далее, как уже было пояснено в первом очерке, можно утверждать, что при φ = 60° N никогда не будут видны звезды, расположенные южнее параллели со склонением δ = 30° S, и т. п.

Для наблюдателя в северных географических широтах экваториальная звездная карта показывает преимущественно те созвездия, которые наблюдаются на южной половине небосвода. Для выяснения видимости созвездий на северной половине небосвода служит северная полярная карта, охватывающая участок, очерченный из северного полюса мира радиусом 60°. Иначе говоря, северная полярная карта перекрывает экваториальную карту в широком поясе между параллелями 30° N и 60° N. Для ориентирования полярной карты на местности необходимо ее меридиан, оцифрованный найденной по табл. 1 величиной τ, расположить над головой так, чтобы он совпал с направлением от зенита к северному полюсу мира.


Поле зрения глаз человека примерно равно 120-150°, так что, если вы смотрите на Полярную, то в поле зрения будут все созвездия северной полярной карты Над горизонтом всегда видны те северные созвездия, звезды которых имеют склонения δ > 90° - φ и «одноименны» с широтой. Например, на широте φ = 45° N незаходящими являются звезды, у которых склонения более δ = 45° N, а на широте φ = 60° N - те звезды, у которых δ > 30° N. и т. п.

Напомним, что все звезды на небе имеют одинаковые размеры - они видны как светящиеся точки и различаются лишь по силе блеска и цветовому оттенку. Размеры кружков на звездной карте указывают не видимый размер звезды на небе, а относительную силу ее блеска - звездную величину. Кроме того, изображение созвездия всегда несколько искажается при развертывании поверхности небесной сферы на плоскость карты. По этим причинам вид созвездия на небе несколько отличается от вида его на карте, однако это не создает существенных затруднений при опознании звезд.

Научиться опознавать навигационные звезды нетрудно. Для плавания в период вашего отпуска вполне достаточно знать расположение десятка созвездий и входящих в них навигационных звезд из числа указанных в табл. 1 первого очерка. Две-три предпоходные ночные тренировки придадут вам уверенность при ориентировании по звездам в море.

Не пытайтесь опознавать созвездия, отыскивая на себе фигуры мифических героев или животных, соответствующие их заманчиво звучащим наименованиям. Можно, конечно, догадаться, что созвездия северных животных - Большой Медведицы и Малой Медведицы чаще всего следует искать в направлении на север, а созвездие южанина Скорпиона - на южной половине небосвода. Однако фактически наблюдаемый вид тех же северных созвездий-«медведиц» лучше передают известные стихи:

Две медведицы смеются:
- Эти звезды вас надули?
Нашим именем зовутся,
А похожи на кастрюли.


Большую Медведицу при опознании звезд удобнее именовать Большим Ковшом, что мы и будем делать. Желающих узнать подробности о созвездиях и их наименованиях отсылаем к превосходному «звездному букварю» Г. Рея и интересной книге Ю. А. Карпенко .

Для мореплавателя практическим путеводителем по звездному небу могут служить схемы - указатели навигационных звезд (рис. 1-4), показывающие расположение этих звезд относительно легко опознаваемых по звездным картам нескольких опорных созвездий.

Основным опорным созвездием является Большая Медведица, ковш которой в наших морях всегда виден над горизонтом (при широте места более 40° N) и легко опознается даже без карты. Запомним собственные имена звезд Большого Ковша (рис. 1): α - Дубге, β - Мерак, γ - Фекда, δ - Мегрец, ε - Алиот, ζ - Мицар, η - Бенетнаш. Вы уже знаете семь навигационных звезд!

По направлению линии Мерак - Дубге иа расстоянии около 30° расположена, как мы уже знаем, Полярная - конец ручки ковша Малой Медведицы, в донышке которого виден Кохаб.

На линии Мегрец - Полярная и на таком же расстоянии от Полярной видна «девичья грудь» Кассиопеи и ее звезды Кафф и Шедар.

По направлению Фекда - Мегрец и на расстоянии около 30° найдем звезду Денеб, расположенную в хвосте созвездия Лебедя - одного из немногих, хоть в какой-то мере соответствующих по конфигурации своему названию.

По направлению Фекда - Алиот в области, удаленной примерно на 60°, видна самая яркая северная звезда - голубая красавица Вега (а Лиры).

По направлению Мицар - Полярная и на расстоянии около 50°-60° от полюса располагается созвездие Андромеды - цепочка из трех звезд: Альферрац, Мирах, Аламак одинаковой яркости.

По направлению Мирах - Аламак на таком же расстоянии виден Мирфак (α Персея).

По направлению Мегрец - Дубге на расстоянии около 50° видна пятиугольная чаша Возничего и одна из наиболее ярких звезд - Капелла.

Мы нашли таким образом почти все навигационные звезды, видимые на северной половнне нашего небосвода. Пользуясь рис. 1, стоит потренироваться в поисках навигационных звезд сначала на звездных картах. Тренируясь «на местности», держите рис. 1 «вверх ногами», направив значком * к точке N.

Перейдем к рассмотрению навигационных звезд на южной половине весеннего небосвода на том же рис. 1.

По перпендикуляру к днищу Большого Ковша на расстоянии около 50° располагается созвездие Льва, в передней лапе которого расположен Регул, а на кончике хвоста - Денебола Некоторым наблюдателям это созвездие напоминает не льва, а утюг с отогнутой ручкой. По направлению хвоста Льва расположено созвездие Девы и звезда Спика. Южнее созвездия Льва в бедной звездами области у экватора будет заметен неяркий Альфард (а Гидры).

На линия Мегрец - Мерак на расстоянии около 50° видно созвездие Близнецов- две яркие звезды Кастор и Поллукс. На одном меридиане с ними и ближе к экватору виден яркий Процион (α Малого Пса).

Двигаясь взглядом по изгибу ручки Большого Ковша, на расстоянии около 30° увидим ярко-оранжевый Арктур (α Волопаса - созвездия, напоминающего парашют над Арктуром). Рядом с этим парашютом видна небольшая и неяркая чаша Северной Короны, в которой выделяется Альфакка,

Продолжая направление этого же изгиба ручки Большого Ковша, неподалеку от горизонта обнаружим Антарес - яркий красноватый глаз созвездия Скорпиона.

Летним вечером (рис. 2) на восточной стороне небосвода хорошо заметен «летний треугольник», образованный яркими звездами Вега, Денеб и Альтаир (α Орла). Созвездие Орла в виде ромба легко отыскивается по направлению полета Лебедя. Между Орлом и Волопасом наблюдается неяркая звезда Рас-Альхаге из созвездия Змееносца.

В осенние вечера на юге наблюдается «Квадрат Пегаса», образованный уже рассмотренной нами звездой Альферрац и тремя звездами из созвездия Пегаса: Маркаб, Шеат, Альгениб. Квадрат Пегаса (рис. 3) легко отыскивается на линии Полярная - Кафф на расстоянии около 50° от Кассиопеи. Относительно же Квадрата Пегаса просто найти созвездия Андромеды, Персея и Возничего к востоку, а созвездия «летнего треугольника» - к западу.

Южнее Квадрата Пегаса вблизи горизонта видны Дифда (β Кита) и Фомальхаут - «рот Южной Рыбы», которую намерен проглотить Кит.

На линии Маркаб - Альгеинб иа расстоянии около 60° виден яркий Альдебаран (α Тельца) в характерных «брызгах» мелких звезд. Между созвездиями Пегаса и Тельца расположен Хамал (α Овна).

На богатой яркими звездами южной половине зимнего неба (рис. 4) легко ориентироваться относительно красивейшего созвездия Ориона, которое опознается без карты. Созвездие Возничего расположено посередине между Орионом и Полярной. Созвездие Тельца находится на продолжении дуги пояса Ориона (образованного «тремя сестрами»-звездами ζ, ε, δ Ориона) на расстоянии около 20°. На южном продолжении той же дуги на расстоянии около 15° сверкает самая яркая звезда - Сириус (α Большого Пса). По направлению γ - α Ориона на расстоянии 20° наблюдается Порцион.

В созвездии Ориона навигационными звездами являются Бетельгейзе и Ригель.

Следует иметь в виду, что вид созвездий может искажаться появляющимися в них планетами - «блуждающими звездами». Положение планет на звездном небе в 1982 г. указано в приводимой табл. 2 Так, изучив эту таблицу, мы установим, что, например, в мае Венера вечером будет не видна, Марс и Сатурн - исказят вид созвездия Девы, а неподалеку от них в созвездии Весов будет виден очень яркий Юпитер (редко наблюдаемый «парад планет»). Сведения о видимых местах планет даются на каждый год в МАЕ и Астрономическом календаре издательства «Наука». Их надо наносить на звездную карту при подготовке к походу, используя указанные в этих пособиях прямые восхождения и склонения планет на дату наблюдений.


Приводимые сезонные схемы - указатели навигационных звезд (рис. 1-4) наиболее удобны для работы в сумерки, когда отчетливо видны горизонт и лишь наиболее яркие звезды. Изображаемые на картах звездного неба конфигурации созвездий могут быть обнаружены только после наступления полной темноты.

Поиск навигационных звезд должен быть осмысленным, вид созвездия надо научиться воспринимать в целом - как образ, картину. Человек быстрее и легче опознает то, что он предполагает увидеть. Именно поэтому при подготовке к плаванию надо изучать звездную карту так же, как турист изучает по карте маршрут прогулки по незнакомому городу.

Выходя иа наблюдения, возьмите с собой звездную карту и указатель навигационных звезд, а также карманный фонарь (его стекло лучше покрыть красным лаком для ногтей). Компас будет полезен, но можно обойтись и без него, определив направление на Север по Полярной. Подумайте о том, что послужит «масштабной линейкой» для оценки угловых расстояний на небосводе. В угле, под которым виден удерживаемый в вытянутой руке и перпендикулярный к ней предмет, содержится столько градусов, сколько сантиметров имеет этот предмет в высоту. На небосводе расстояние между звездами Дубге и Мегрец равно 10°, между звездами Дубге и Бенетнаш - 25°, между крайними звездами Кассиопея - 15°, восточная сторона Квадрата Пегаса - 15°, между Ригелем и Бетельгейзе - около 20°.

Выйдя на местность в назначенное время - сориентируйтесь в направления на Север, Восток, Юг я Запад. Найдите я опознайте созвездие, проходящее над вашей головой,- через зенит или вблизи него. Сделайте привязку к местности сезонной схемы и экваториальной карты - по точке S и направлению местного небесного меридиана, перпендикулярному к линии горизонта в точке S; привяжите к местности северную полярную карту - по линии ZP . Найдите опорное созвездие - Большую Медведицу (Квадрат Пегаса или Орион) и попрактикуйтесь в опознания навигационных звезд. При этом надо помнить об искажениях величин визуально наблюдаемых высот светил вследствие сплюснутости небосвода, об искажениях цвета звезд на малых высотах, о кажущемся увеличении размеров созвездий вблизи горизонта и уменьшении по мере приближения к зениту, об изменении положения фигур созвездий в течение ночи относительно видимого горизонта из-за вращения неба.

А. Вычисление меридианного времени

Б. Пример расчета меридианного времени и выбора сезонной схемы звездного неба

8 мая 1982 г. в Балтийском море (широта φ = 59,5° N; долгота λ = 24,8° O st намечены наблюдения звездного неба в момент Т С = 00 Ч 30 М по стандартному (летнему московскому) времени. Подобрать и сориентировать звездную карту и указатель навигационных звезд.

На берегу приближенно можно принимать Т М, равным летнему, уменьшенному на 2 ч. В нашем примере:


Во всех случаях, когда стандартное время наблюдений Т С меньше № С, перед выполнением вычитания надо увеличить Т С на 24 Ч; при этом всемирная дата получится меньше местной на единицу. Если же окажется, что после выполнения сложения Т гр оказалось более 24 Ч, надо отбросить 24 Ч я дату результата увеличить на единицу. Это же правило применяется при вычислении Т М по Г гр и λ.

Выбор сезонной схемы и ее ориентировка

Местной дате 7 мая и моменту Т М = 22 Ч 09 М согласно табл. 1 ближе всего соответствует сезонная схема на рис. 1. Но эта схема построена для Т М = 21 Ч 7 мая, а мы будем вести наблюдения на 1 Ч 09 М позже (в градусной мере 69 М: 4 М = 17°). Поэтому местный меридиан (линия S - P N) расположится левее центрального меридиана схемы на 17° (если бы мы наблюдали не позже, а раньше, то местный меридиан сместился бы вправо).

В нашем примере через местный меридиан будет проходить созвездие Девы над точкой Юга и созвездие Большой Медведицы возле зенита, иад точкой Севера расположится Кассиопея (см. звездную карту для tγ = 13 Ч 09 М и τ К = 163°).

Для опознания навигационных звезд послужит ориентировка относительно Большой Медведицы (рис. 1).

Примечания

1. Слабые по блеску созвездия Рыб и Рака на карте не показаны.

2. Названия этих книг. Г. Рей. Звезды. М., «Мир», 1969. (168 с.); Ю. А, Карпенко, Названия звездного неба, М., «Наука», 1981 (183 с.).



erkas.ru - Обустройство лодки. Резиновые и пластиковые. Моторы для лодок