Основные свойства нервной клетки.

В 1786 году профессор анатомии Болонского университета Луиджи Гальвани провел ряд опытов, положивших начало целенаправленным исследованиям в области биоэлектрических явлений. В первом опыте он подвешивал препарат обнаженных лапок лягушки с помощью медного крючка на железной решетке, и обнаружил, что при каждом касании мышцами решетки, они сокращались. Гальвани предположил, что сокращения мышц вообще – следствие воздействия на них «животного электричества», источником которого являются нервы и мышцы. Однако, по мнению Вольта, причиной сокращения был электрический ток, возникший в области контакта разнородных металлов. Гальвани поставил второй опыт, в котором источником тока, действовавшего на мышцу, точно был нерв: мышца опять сокращалась. Таким образом, было получено точное доказательство существования «животного электричества».

Все клетки имеют свой электрический заряд, который формируется в результате неодинаковой проницаемости мембраны для различных ионов. Клетки возбудимых тканей (нервная, мышечная, железистая) отличаются тем, что они под действием раздражителя меняют проницаемость своей мембраны для ионов, в результате чего ионы очень быстро транспортируются согласно электрохимическому градиенту. Это и есть процесс возбуждения. Его основой является потенциал покоя.

Потенциал покоя

Потенциал покоя – относительно стабильная разность электрических потенциалов между наружной и внутренней сторонами клеточной мембраны. Его величина обычно варьирует в пределах от -30 до -90 мВ. Внутренняя сторона мембраны в покое заряжена отрицательно, а наружная – положительно из-за неодинаковых концентраций катионов и анионов внутри и вне клетки.

Внутри- и внеклеточные концентрации ионов (ммоль/л) в мышечных клетках теплокровных животных

В нервных клетках похожая картина. Таким образом, видно, что основную роль в создании отрицательного заряда внутри клетки играют ионы K + и высокомолекулярные внутриклеточные анионы, главным образом они представлены белковыми молекулами с отрицательно заряженными аминокислотами (глутамат, аспартат) и органическими фосфатами. Эти анионы, как правило, не могут транспортироваться через мембрану, создавая постоянный отрицательный внутриклеточный заряд. Во всех точках клетки отрицательный заряд практически одинаков. Заряд внутри клетки является отрицательным как абсолютно (в цитоплазме анионов больше, чем катионов), так и относительно наружной поверхности клеточной мембраны. Абсолютная разность невелика, однако этого достаточно для создания электрического градиента.

Главным ионом, обеспечивающим формирование потенциала покоя (ПП), является K + . В покоящейся клетке устанавливается динамическое равновесие между числом входящих и выходящих ионовK + . Это равновесие устанавливается тогда, когда электрический градиент уравновесит концентрационный. Согласно концентрационному градиенту, создаваемому ионными насосами, K + стремится выйти из клетки, однако отрицательный заряд внутри клетки и положительный заряд наружной поверхности клеточной мембраны препятствуют этому (электрический градиент). В случае равновесия на клеточной мембране устанавливается равновесный калиевый потенциал.

Равновесный потенциал для каждого иона можно рассчитать по формуле Нернста:

E ion =RT/ZF·ln( o / i),

где E ion - потенциал, создаваемый данным ионом;

R – универсальная газовая постоянная;

Т – абсолютная температура (273+37°С);

Z – валентность иона;

F – постоянная Фарадея (9,65·10 4);

O – концентрация иона во внешней среде;

I - концентрация иона внутри клетки.

При температуре 37°С равновесный потенциал для K + равен -97мВ. Однако реальный ПП меньше – около -90 мВ. Это объясняется тем, что в формирование ПП свой вклад вносят и другие ионы. В целом ПП – это алгебраическая сумма равновесных потенциалов всех ионов, находящихся внутри и вне клетки, включающий также значения поверхностных зарядов самой клеточной мембраны.

Вклад Na + и Cl - в создание ПП невелик, но, тем не менее, он имеет место. В покое вход Na + в клетку низкий (намного ниже, чем K +), но он уменьшает мембранный потенциал. Влияние Cl - противоположно, так как это анион. Отрицательный внутриклеточный заряд не позволяет большому количеству Cl - проникнуть в клетку, поэтому Cl - это в основном внеклеточный анион. Как внутри клетки, так и вне ееNa + и Cl - нейтрализуют друг друга, вследствие чего их совместное поступление в клетку не оказывает существенного влияния на величину ПП.

Наружная и внутренняя стороны мембраны несут на себе собственные электрические заряды, преимущественно с отрицательным знаком. Это полярные составляющие мембранных молекул – гликолипидов, фосфолипидов, гликопротеинов. Ca 2+ , как внеклеточный катион, взаимодействует с наружными фиксированными отрицательными зарядами, а также с отрицательными карбоксильными группами интерстиция, нейтрализуя их, что приводит к увеличению и стабилизации ПП.

Для создания и поддержания электрохимических градиентов необходима постоянная работа ионных насосов. Ионный насос – это транспортная система, обеспечивающая перенос иона вопреки электрохимическому градиенту, с непосредственными затратами энергии. Градиенты Na + и K + поддерживаются с помощью Na/K – насоса. Сопряженность транспорта Na + и K + примерно в 2 раза уменьшает энергозатраты. В целом же траты энергии на активный транспорт огромны: лишь Na/K – насос потребляет около 1/3 всей энергии, расходуемой организмом в покое. 1АТФ обеспечивает один цикл работы – перенос 3Na + из клетки, и 2 K + в клетку. Асимметричный перенос ионов способствует заодно формированию и электрического градиента (примерно 5 – 10мВ).

Нормальная величина ПП является необходимым условием возникновения возбуждения клетки, т.е. распространения потенциала действия, инициирующего специфическую деятельность клетки.

Потенциал действия (ПД)

ПД – это электрофизиологический процесс, выражающийся в быстром колебании мембранного потенциала, вследствие специфического перемещения ионов и способный распространяться без декремента на большие расстояния. Амплитуда ПД колеблется в пределах 80 – 130 мВ, длительность пика ПД в нервном волокне – 0,5 – 1 мс. Амплитуда потенциала действия не зависит от силы раздражителя. ПД либо совсем не возникает, если раздражение подпороговое, либо достигает максимальной величины, если раздражение пороговое или сверхпороговое. Главным в возникновении ПД является быстрый транспорт Na + внутрь клетки, что способствует вначале снижению мембранного потенциала, а затем – изменению отрицательного заряда внутри клетки на положительный.

В составе ПД различают 3 фазы: деполяризацию, инверсию, и реполяризацию.

1. Фаза деполяризации . При действии на клетку деполяризующего раздражителя начальная частичная деполяризация происходит без изменения ее проницаемости для ионов (не происходит движение Na + внутрь клетки, т. к. закрыты быстрые потенциалчувствительные каналы для Na +). Na + - каналы обладают регулируемым воротным механизмом, который расположен на внутренней и внешней сторонах мембраны. Имеются активационные ворота (m – ворота) и инактивационные (h – ворота). В покое m – ворота закрыты, а h – ворота открыты. В мембране также имеются K + - каналы, имеющие только одни ворота (активационные), закрытые в покое.

Когда деполяризация клетки достигает критической величины (Е кр – критический уровень деполяризации, КУД), которая обычно равна 50мВ, проницаемость для Na + резко возрастает – открывается большое количество потенциалзависимых m – ворот Na + - каналов. За 1 мс через 1 открытый Na + - канал в клетку попадает до 6000 ионов. Развивающаяся деполяризация мембраны вызывает дополнительное увеличение ее проницаемости для Na + , открываются все новые и новые m - ворота Na + - каналы, так что ток Na + имеет характер регенеративного процесса (сам себя усиливает). Как только ПП становится равным нулю, фаза деполяризации заканчивается.

2.Фаза инверсии. Вход Na + в клетку продолжается, т. к. m - ворота Na + - каналы еще открыты, поэтому внутри клетки заряд становится положительным, а снаружи – отрицательным. Теперь электрический градиент препятствует входу Na + в клетку, однако, из-за того, что концентрационный градиент сильнее электрического, Na + все же проходит в клетку. В тот момент, когда ПД достигает максимального значения, происходит закрытие h – ворот Na + - каналов (эти ворота чувствительны к величине положительного заряда в клетке) и поступление Na + в клетку прекращается. Одновременно открываются ворота K + - каналов. K + транспортируется из клетки согласно химическому градиенту (на нисходящей фазе инверсии – еще и по электрическому градиенту). Выход положительных зарядов из клетки приводит к уменьшению ее заряда. K + с небольшой скоростью может выходить из клетки также через неуправляемые K + - каналы, которые всегда открыты. Все рассмотренные процессы являются регенеративными. Амплитуда ПД складывается из величины ПП и величины фазы инверсии. Фаза инверсии заканчивается, когда электрический потенциал снова становится равным нулю.

3.Фаза реполяризации. Связана с тем, что проницаемость мембраны для K + еще высока, и он выходит из клетки по градиенту концентрации, несмотря на противодействие электрического градиента (клетка внутри снова имеет отрицательный заряд). Выходом K + обусловлена вся нисходящая часть пика ПД. Нередко в конце ПД наблюдается замедление реполяризации, кто связано с закрытием значительной части ворот K + - каналов, а также – с возрастанием противоположно направленного электрического градиента.

Разность электрических потенциалов (в вольтах или мв) между жидкостью, находящейся по одну сторону мембраны и жидкостью по другую ее сторону называется мембранным потенциалом (МП) и обозначается . Величина МП живых клеток составляет обычно от -30 до -100 мв и вся эта разность потенциалов создается в областях непосредственно прилегающих с обоих сторон к клеточной мембране. Уменьшение величины МП называют деполяризацией , увеличение - гиперполяризацией , восстановление исходного значения после деполяризации - реполяризация . Мембранный потенциал существует во всех клетках, но в возбудимых тканях (нервных, мышечных, железистых), мембранный потенциал или как его еще называют в этих тканях, мембранный потенциал покоя , играет ключевую роль в реализации их физиологических функций. Мембранный потенциал обусловлен двумя основными свойствами всех эукариотических клеток: 1) асимметричным распределением ионов между вне- и внутриклеточной жидкостью, поддерживаемым метаболическими процессами; 2) Избирательной проницаемостью ионных каналов клеточных мембран. Чтобы уяснить себе как возникает МП представим себе, что некий сосуд разделен на два отсека мембраной, проницаемой только для ионов калия. Пусть в первом отсеке содержится 0,1 М, а во втором 0,01 М раствор КСl. Поскольку концентрация ионов калия (К +) в первом отсеке в 10 раз выше, чем во втором, то в начальный момент на каждые 10 ионов К + диффундирующих из отсека 1 во второй будет приходится один ион диффундирующий в обратном направлении. Так как анионы хлора (Сl-) не могут переходить через мембрану вместе с катионами калия, то во втором отсеке будет образовываться избыток положительно заряженных ионов и, напротив, в отсеке 1 окажется избыток ионов Сl-. В результате возникает трансмембранная разность потенциалов , препятствующая дальнейшей диффузии К + во второй отсек, поскольку для этого им нужно преодолеть притяжение отрицательных ионов Сl-, в момент вхождения в мембрану со стороны отсека 1 и отталкивание одноименных ионов на выходе из мембраны в отсек 2. Таким образом, на каждый ион К + , проходящий через мембрану в этот момент действуют две силы - химический градиент концентраций (или химическая разность потенциалов), способствующая переходу ионов калия из первого отсека во второй, и электрическая разность потенциалов, заставляющая ионы К + двигаться в обратном направлении. После того как эти две силы уравновесятся, количество ионов К + перемещающееся из отсека 1 в отсек 2 и обратно сравняется, установится электрохимическое равновесие . Соответствующая такому состоянию трансмембранная разность потенциалов называется равновесным потенциалом , в данном конкретном случае равновесным потенциалом для ионов калия (Ек ). В конце 19 века Вальтер Нернст установил, что равновесный потенциал зависит от абсолютной температуры, валентности диффундирующего иона и от отношения концентраций данного иона по разные стороны мембраны:


где Ех- равновесный потенциал для иона X, R - универсальная газовая постоянная = 1,987 кал/(моль град), T - абсолютная температура в градусах Кельвина, F - число Фарадея = 23060 кал/в, Z - заряд переносимого иона, [X] 1 и [X] 2 - концентрации иона в отсеках 1 и 2.

Если перейти от натурального логарифма к десятичному, то для температуры 18˚С и моновалентного иона можно записать уравнение Нернста следующим образом:

Ех= 0,058 lg

Рассчитаем с помощью уравнения Нернста калиевый равновесный потенциал для воображаемой клетки, приняв, что внеклеточная концентрация калия [К + ]н= 0,01 М, а внутриклеточная - [К + ]в = 0,1 М:

Ек= 0,058 lg = 0,058 lg=0,058 (-1) = -0,058 ‚= -58 мв

В данном случае, Ек отрицателен, поскольку ионы калия будут выходить из гипотетичной клетки, заряжая отрицательно слой цитоплазмы, прилегающий к внутренней стороне мембраны. Поскольку в данной гипотетичной системе имеется только один диффундирующий ион, то калиевый равновесный потенциал будет равен мембранному потенциалу (Ек= Vм ).

Приведенный механизм ответственен и за образование мембранного потенциала в реальных клетках, но в отличие от рассмотренной упрощенной системы, в которой через "идеальную" мембрану мог диффундировать только один ион, реальные клеточные мембраны пропускают в той или иной все неорганические ионы. Однако, чем менее мембрана проницаема для какого-либо иона, тем меньшее влияние он оказывает на МП. Учитывая это обстоятельство, Голдманом в 1943г. было предложено уравнение для расчета величины МП реальных клеток, учитывающее концентрации и относительную проницаемость через плазматическую мембрану всех диффундирующих ионов:

Vм = 0,058 lg

Используя метод меченых изотопов, Ричард Кейнс в 1954 г. определил проницаемость клеток мышц лягушки для основных ионов. Оказалось, что проницаемость для натрия примерно в 100 раз меньше, чем для калия, а ион Сl-не вносит никакого вклада в создание МП. Поэтому для мембран мышечных клеток уравнение Голдмана можно записать в следующем упрощенном виде:

Vм = 0,058 lg

Vм = 0,058 lg

Исследования с применением вводимых в клетки микроэлектродов, показали, что потенциал покоя клеток скелетных мышц лягушки колеблется от -90 до -100 мв. Такое хорошее соответствие экспериментальных данных теоретическим подтверждает, что потенциал покоя определяется диффузионными потоками неорганических ионов. При этом, в реальных клетках мембранный потенциал близок к равновесному потенциалу иона, который характеризуется максимальной трансмембранной проницаемостью, а именно к равновесному потенциалу иона калия.


Зачем нам нужно знать, что такое потенциал покоя?

Что такое "животное электричество"? Откуда в организме берутся "биотоки"? Как живая клетка, находящаяся в водной среде, может превратиться в "электрическую батарейку"?

На эти вопросы мы сможем ответить, если узнаем, как клетка за счёт перераспределения электрических зарядов создаёт себе электрический потенциал на мембране.

Как работает нервная система? С чего в ней всё начинается? Откуда в ней берётся электричество для нервных импульсов?

На эти вопросы мы также сможем ответить, если узнаем, как нервная клетка создаёт себе электрический потенциал на мембране.

Итак, понимание того, как работает нервная система, начинается с того, что надо разобраться, как работает отдельная нервная клетка - нейрон.

А в основе работы нейрона с нервными импульсами лежит перераспределение электрических зарядов на его мембране и изменение величины электрических потенциалов. Но чтобы потенциал изменять, его нужно для начала иметь. Поэтому можно сказать, что нейрон, готовясь к cвоей нервной работе, создаёт на своей мембране электрический потенциал , как возможность для такой работы.

Таким образом, наш самый первый шаг к изучению работы нервной системы - это понять, каким образом перемещаются электрические заряды на нервных клетках к как за счёт этого на мембране появляется электрический потенцила. Этим мы и займёмся, и назовём этот процесс появления электрического потенциала у нейронов - формирование потенциала покоя .

Определение

В норме, когда клетка готова к работе, у неё уже есть электрический заряд на поверхности мембраны. Он называется мембранный потенциал покоя .

Потенциал покоя - это разность электрических потенциалов между внутренней и наружной сторонами мембраны, когда клетка находится в состоянии физиологического покоя. Его средняя величина составляет -70 мВ (милливольт).

"Потенциал" - это возможность , он сродни понятию "потенция". Электрический потенциал мембраны - это её возможности по перемещению электрических зарядов, положительных или отрицательных. В роли зарядов выступают заряженные химические частицы - ионы натрия и калия, а также кальция и хлора. Из них только ионы хлора заряжены отрицательно (-), а остальные - положительно (+).

Таким образом, имея электрический потенциал, мембрана может перемещать в клетку или из клетки указанные выше заряженные ионы.

Важно понимать, что в нервной системе электрические заряды создаются не электронами, как в металлических проводах, а ионами - химическими частицами, имеющими электрический заряд. Электрический ток в организме и его клетках - это поток ионов, а не электронов, как в проводах. Обратите также внимание на то, что заряд мембраны измеряется изнутри клетки, а не снаружи.

Если говорить уж совсем примитивно просто, то получается, что снаружи вокруг клетки будут преобладать "плюсики", т.е. положительно заряженные ионы, а внутри - "минусики", т.е. отрицательно заряженные ионы. Можно сказать, что внутри клетка электроотрицательна . И теперь нам всего лишь надо объяснить, как это так получилось. Хотя, конечно, неприятно сознавать, что все наши клетки - отрицательные "персонажи". ((

Сущность

Сущность потенциала покоя - это преобладание на внутренней стороне мембраны отрицательных электрических зарядов в виде анионов и недостаток положительных электрических зарядов в виде катионов, которые сосредотачиваются на её наружной стороне, а не на внутренней.

Внутри клетки - "отрицательность", а снаружи - "положительность".

Такое положение вещей достигается с помощью трёх явлений: (1) поведения мембраны, (2) поведения положительных ионов калия и натрия и (3) соотношения химической и электрической силы.

1. Поведение мембраны

В поведении мембраны для потенциала покоя важны три процесса:

1) Обмен внутренних ионов натрия на наружные ионы калия. Обменом занимаются специальные транспортные структуры мембраны : ионные насосы-обменники . Таким способом мембрана перенасыщает клетку калием, но обедняет натрием.

2) Открытые калиевые ионные каналы . Через них калий может как заходить в клетку, так и выходить из неё. Он выходит в основном.

3) Закрытые натриевые ионные каналы . Из-за этого натрий, выведенный из клетки насосми-обменниками, не может вернуться в неё обратно. Натриевые каналы открываются только при особых условиях - и тогда потенциал покоя нарушается и смещается в сторону нуля (это называется деполяризацией мембраны, т.е. уменьшением полярности).

2. Поведение ионов калия и натрия

Ионы калия и натрия по-разному перемещаются через мембрану:

1) Через ионные насосы-обменники натрий насильно выводится из клетки, а калий затаскивается в клетку .

2) Через постоянно открытые калиевые каналы калий выходит из клетки, но может и возвращаться в неё обратно через них же.

3) Натрий "хочет" войти в клетку, но "не может", т.к. каналы для него закрыты.

3. Соотношение химической и электрической силы

По отношению к ионам калия между химической и электрической силой устанавливается равновесие на уровне - 70 мВ.

1) Химическая сила выталкивает калий из клетки, но стремится затянуть в неё натрий.

2) Электрическая сила стремится затянуть в клетку положительно заряженные ионы (как натрий, так и калий).

Формирование потенциала покоя

Попробую рассказать коротко, откуда берётся мембранный потенциал покоя в нервных клетках - нейронах. Ведь, как всем теперь известно, наши клетки только снаружи положительные, а внутри они весьма отрицательные, и в них существует избыток отрицательных частиц - анионов и недостаток положительных частиц - катионов.

И вот тут исследователя и студента поджидает одна из логических ловушек: внутренняя электроотрицательность клетки возникает не из-за появления лишних отрицательных частиц (анионов), а наоборот - из-за потери некоторого количества положительных частиц (катионов).

И поэтому сущность нашего рассказа будет заключаться не в том, что мы объясним, откуда берутся отрицательные частицы в клетке, а в том, что мы объясним, каким образом в нейронах получается дефицит положительно заряженных ионов - катионов.

Куда же деваются из клетки положительно заряженные частицы? Напомню, что это ионы натрия - Na + и калия - K + .

Натрий-калиевый насос

А всё дело заключается в том, что в мембране нервной клетки постоянно работают насосы-обменники , образованные специальными белками, встроенными в мембрану. Что они делают? Они меняют "собственный" натрий клетки на наружный "чужой" калий. Из-за этого в клетке оказывается в конце концов недостаток натрия, который ушёл на обмен. И в то же время клетка переполняется ионами калия, который в неё натащили эти молекулярные насосы.

Чтобы легче было запомнить, образно можно сказать так: "Клетка любит калий! " (Хотя об истинной любви здесь не может идти и речи!) Поэтому она и затаскивает калий в себя, несмотря на то, что его и так полно. Поэтому она невыгодно обменивает его на натрий, отдавая 3 иона натрия за 2 иона калия. Поэтому она тратит на этот обмен энергию АТФ. И как тратит! До 70% всех энергозатрат нейрона может уходить на работу натрий-калиевых насосов. Вот что делает любовь, пусть даже не настоящая!

Кстати, интересно, что клетка не рождается с потенциалом покоя в готовом виде. Например, при дифференцировке и слиянии миобластов потенциал их мембраны изменяется от -10 до -70 mV, т.е. их мембрана становится более электроотрицательной, она поляризуется в процессе дифференцировки. А в экспериментах на мультипотентных мезенхимальных стромальных клетках (ММСК) костного мозга человека искусственная деполяризация ингибировала дифференцировку клеток (Fischer-Lougheed J., Liu J.H., Espinos E. et al. Human myoblast fusion requires expression of functional inward rectifier Kir2.1 channels. Journal of Cell Biology 2001; 153: 677-85; Liu J.H., Bijlenga P., Fischer-Lougheed J. et al. Role of an inward rectifier K+ current and of hyperpolarization in human myoblast fusion. Journal of Physiology 1998; 510: 467-76; Sundelacruz S., Levin M., Kaplan D.L. Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells. Plos One 2008; 3).

Образно говоря, можно выразиться так:

Создавая потенциал покоя, клетка "заряжается любовью".

Это любовь к двум вещам:

1) любовь клетки к калию,

2) любовь калия к свободе.

Как ни странно, но результат этих двух видов любви - пустота!

Именно она, пустота, создаёт в клетке отрицательный электрический заряд - потенциал покоя. Точнее, отрицательный потенциал создают пустые места, оставшиеся от убежавшего из клетки калия.

Итак, результат деятельности мембранных ионных насосов-обменников таков:

Натрий-калиевый ионный насос-обменник создаёт три потенциала (возможности):

1. Электрический потенциал - возможность затягивать внутрь клетки положительно заряженные частицы (ионы).

2. Ионный натриевый потенциал - возможность затягивать внутрь клетки ионы натрия (и именно натрия, а не какие-нибудь другие).

3. Ионный калиевый потенциал - возможновть выталкивать из клетки ионы калия (и именно калия, а не какие-нибудь другие).

1. Дефицит натрия (Na +) в клетке.

2. Избыток калия (K +) в клетке.

Можно сказать так: ионные насосы мембраны создают разность концентраций ионов, или градиент (перепад) концентрации, между внутриклеточной и внеклеточной средой.

Именно из-за получившегося дефицита натрия в клетку теперь "полезет" этот самый натрий снаружи. Так всегда ведут себя вещества: они стремятся выравнять свою концентрацию во всём объёме раствора.

И в то же время в клетке получился избыток ионов калия по сравнению с наружной средой. Потому что насосы мембраны накачали его в клетку. И он стремится уравнять свою концентрацию внутри и снаружи, и поэтому стремится выйти из клетки.

Тут ещё важно понять, что ионы натрия и калия как бы "не замечают" друг друга, они реагируют только "на самих себя". Т.е. натрий реагирует на концентрацию натрия же, но "не обращает внимания" на то, сколько вокруг калия. И наоборот, калий реагирует только на концентрацию калия и "не замечает" натрий. Получается, что для понимания поведения ионов в клетке надо по-отдельности сравнивать концентрации ионов натрия и калия. Т.е. надо отдельно сравнить концентрацию по натрию внутри и снаружи клетки и отдельно - концентрацию калия внутри и снаружи клетки, но не имеет смысла сравнивать натрий с калием, как это часто делается в учебниках.

По закону выравнивания концентраций, который действует в растворах, натрий "хочет" снаружи войти в клетку. Но не может, так как мембрана в обычном состоянии плохо его пропускает. Его заходит немножко и клетка его опять тут же обменивает на наружный калий. Поэтому натрий в нейронах всегда в дефиците.

А вот калий как раз может легко выходить из клетки наружу! В клетке его полно, и она его удержать не может. Так вот он и выходит наружу через особые белковые дырочки в мембране (ионные каналы).

Анализ

От химического - к электрическому

А теперь - самое главное, следите за излагаемой мыслью! Мы должны перейти от движения химических частиц к движению электрических зарядов.

Калий заряжен положительным зарядом, и поэтому он, когда выходит из клетки, выносит из неё не только себя, но и "плюсики" (положительные заряды). На их месте в клетке остаются "минусы" (отрицательные заряды). Это и есть мембранный потенциал покоя!

Мембранный потенциал покоя - это дефицит положительных зарядов внутри клетки, образовавшийся за счёт утечки из клетки положительных ионов калия.

Заключение

Рис. Схема формирования потенциала покоя (ПП). Автор благодарит Попову Екатерину Юрьевну за помощь в создании рисунка.

Составные части потенциала покоя

Потенциал покоя - отрицательный со стороны клетки и состоит как бы из двух частей.

1. Первая часть - это примерно -10 милливольт, которые получаются от неравносторонней работы мембранного насоса-обменника (ведь он больше выкачивает "плюсиков" с натрием, чем закачивает обратно с калием).

2. Вторая часть - это утекающий всё время из клетки калий, утаскивающий положительные заряды из клетки. Он дает большую часть мембранного потенциала, доводя его до -70 милливольт.

Калий перестанет выходить из клетки (точнее, его вход и выход сравняются) только при уровне электроотрицательности клетки в -90 милливольт. Но этому мешает постоянно подтекающий в клетку натрий, который тащит с собой свои положительные заряды. И в клетке поддерживается равновесное состояние на уровне -70 милливольт.

Обратите внимание на то, что для создания потенциала покоя нужны затраты энергии. Эти затраты производятся ионными насосами, которые обменивают "свой" внутренний натрий (ионы Na +) на "чужой" внешний калий (K +). Вспомним, что ионные насосы являются ферментами АТФазами и расщепляют АТФ, получая из неё энергию на указанный обмен ионов разного типа друг на друга.Тут очень важно понять, что с мембраной "работают" сразу 2 потенциала: химический (концентрационный градиент ионов) и электрический (разность электрических потенциалов по разные стороны мембраны). Ионы перемещаются в ту или иную сторону под действием обеих этих сил, на которые и тратится энергия. При этом один из двух потенциалов (химический или электрический) уменьшается, а другой увеличивается. Разумеется, если рассматривать электрический потенциал (разность потенциалов) отдельно, то не будут учитываться "химические" силы, перемещающие ионы. И тогда может сложиться неверное впечатление о том, что энергия на движение ионо берётся как бы ниоткуда. Но это не так. Необходимо рассматривать обе силы: химическую и электрическую. При этом крупные молекулы с отрицательными зарядами, находящиеся внутри клетки играют роль "статистов", т.к. их не перемещают через мембрану ни химические, ни электрические силы. Поэтому эти отрицательные частицы обычно и не рассматривают, хотя они существуют и именно они обеспечивают отрицательную сторону разности потенциалов между внутренней и наружной сторонами мембраны. А вот шустрые ионы калия, как раз способны к перемещению, и именно их утечка из клетки под действием химических сил создаёт львиную долю электрического потенциала (разности потенциалов). Ведь именно ионы калия перемещают на наружную сторону мембраны положительные электрические заряды, будучи положительно заряженными частицами.

Так что всё дело в натрий-калиевом мембранном насосе-обменнике и последующем вытекании из клетки "лишнего" калия. За счёт потери положительных зарядов при этом вытекании внутри клетки нарастает электроотрицательность. Она-то и есть "мембранный потенциал покоя". Он измеряется внутри клетки и составляет обычно -70 мВ.

Выводы

Говоря образно, "мембрана превращает клетку в "электрическую батарейку" с помощью управления ионными потоками".

Мембранный потенциал покоя образуется за счёт двух процессов:

1. Работа калий-натриевого насоса мембраны.

Работа калий-натриевого насоса, в свою очередь, имеет 2 следствия:

1.1. Непосредственное электрогенное (порождающее электрические явления) действие ионного насоса-обменника. Это создание небольшой электроотрицательности внутри клетки (-10 мВ).

Виноват в этом неравный обмен натрия на калий. Натрия выбрасывается из клетки больше, чем поступает в обмен калия. А вместе с натрием удаляется и больше "плюсиков" (положительных зарядов), чем возвращается вместе с калием. Возникает небольшой дефицит положительных зарядов. Мембрана изнутри заряжается отрицательно (примерно -10 мВ).

1.2. Создание предпосылок для возникновения большой электроотрицательности.

Эти предпосылки - неравная концентрация ионов калия внутри и снаружи клетки. Лишний калий готов выходить из клетки и выносить из неё положительные заряды. Об этом мы скажем сейчас ниже.

2. Утечка ионов калия из клетки.

Из зоны повышенной концентрации внутри клетки ионы калия выходят в зону пониженной концентрации наружу, вынося заодно положительные электрические заряды. Возникает сильный дефицит положительных зарядов внутри клетки. В итоге мембрана дополнительно заряжается изнутри отрицательно (до -70 мВ).

Финал

Калий-натриевый насос создает предпосылки для возникновения потенциала покоя. Это - разность в концентрации ионов между внутренней и наружной средой клетки. Отдельно проявляет себя разность концентрации по натрию и разность концентрации по калию. Попытка клетки выравнять концентрацию ионов по калию приводит к потере калия, потере положительных зарядов и порождает электроотрицательность внутри клетки. Эта электроотрицательность составляет большую часть потенциала покоя. Меньшую его часть составляет непосредственная электрогенность ионного насоса, т.е. преобладающие потери натрия при его обмене на калий.

Видео: Мембранный потенциал покоя (Resting membrane potential)

Все живые клетки обладают способностью под влиянием раздражителей переходить из состояния физиологического покоя в состояние активности или возбуждения.

Возбуждение - это комплекс активных электрических, химических и функциональных изменений в возбудимых тканях (нервной, мышечной или железистой), которыми ткань отвечает на внешнее воздействие. Важную роль при возбуждении играют электрические процессы, обеспечивающие проведение возбуждения по нервным волокнам и приводящие ткани в активное (рабочее) состояние.

Мембранный потенциал

Живые клетки обладают важным свойством: внутренняя поверхность клетки всегда заряжена отрицательно по отношению к внешней ее стороне. Между внешней поверхностью клетки, заряженной электроположительно по отношению к протоплазме, и внутренней стороной клеточной мембраны существует разность потенциалов, которая колеблется в пределах 60-70 мВ. По данным П. Г. Ко- стюка (2001), у нервной клетки эта разность колеблется в пределах от 30 до 70 мВ. Разность потенциалов между внешней и внутренней сторонами мембраны клетки называют мембранным потенциалом, или потенциалом покоя (рис. 2.1).

Мембранный потенциал покоя присутствует на мембране до тех пор, пока клетка жива, и исчезает с гибелью клетки. Л. Гальвани еще в 1794 г. показал, что если повредить нерв или мышцу, сделав поперечное сечение и приложив к поврежденной части и к месту повреждения электроды, соединенные с гальванометром, то гальванометр покажет ток, который течет всегда от неповрежденной части ткани к месту разреза. Это течение он назвал током покоя. По своей физиологической сути ток покоя и мембранный потенциал покоя - одно и то же. Измеренная в данном опыте разность потенциалов составляет 30-50 мВ, поскольку при повреждении ткани часть тока шунтируется в межклеточном пространстве и окружающей исследуемую структуру жидкости. Разность потенциалов можно рассчитать по формуле Нернста:

где R - газовая постоянная, Т - абсолютная температура, F - число Фарадея, [К] вн. и [К] нар. - концентрация калия внутри и снаружи клетки.

Рис. 2.1.

Причина возникновения потенциала покоя общая для всех клеток. Между протоплазмой клетки и внеклеточной средой существует неравномерное распределение ионов (ионная асимметрия). Состав крови человека по солевому балансу напоминает состав океанской воды. Внеклеточная среда в центральной нервной системе также содержит много хлорида натрия. Ионный состав цитоплазмы клеток беднее. Внутри клеток в 8-10 раз меньше ионов Na + и в 50 раз меньше ионовС!". Основным катионом цитоплазмы является К + . Его концентрация внутри клетки в 30 раз выше, чем во внеклеточной среде, и приблизительно равняется внеклеточной концентрации Na Основными противоионами для К + в цитоплазме являются органические анионы, в частности анионы аспарагиновой, гистаминовой и других аминокислот. Такая асимметрия - это нарушение термодинамического равновесия. Для того чтобы восстановить его, ионы калия должны постепенно покидать клетку, а ионы натрия - стремиться в нее. Однако этого не происходит.

Первым препятствием для выравнивания разности концентраций ионов является плазматическая мембрана клетки. Она состоит из двойного слоя молекул фосфолипидов, покрытых изнутри слоем белковых молекул, а снаружи - слоем углеводов (мукополисахари- дов). Некоторая часть клеточных белков встроена непосредственно в двойной липидный слой. Это внутренние белки.

Мембранные белки всех клеток делят на пять классов: насосы, каналы, рецепторы, ферменты и структурные белки. Насосы служат для перемещения ионов и молекул против градиентов концентрации, используя для этого метаболическую энергию. Белковые каналы, или поры, обеспечивают избирательную проницаемость (диффузию) через мембрану соответствующих им по размеру ионов и молекул. Рецепторные белки, обладающие высокой специфичностью, распознают и связывают, прикрепляя к мембране, многие типы молекул, необходимых для жизнедеятельности клетки в каждый определенный момент времени. Ферменты ускоряют течение химических реакций у поверхности мембраны. Структурные белки обеспечивают соединение клеток в органы и поддержание субклеточной структуры.

Все эти белки специфичны, но не строго. В определенных условиях тот или иной белок может быть одновременно и насосом, и ферментом, и рецептором. Через каналы мембраны молекулы воды, а также соответствующие размерам пор ионы входят в клетку и выходят из нее. Проницаемость мембраны для различных катионов не одинакова и изменяется при разных функциональных состояниях ткани. В покое мембрана в 25 раз более проницаема для ионов калия, чем для ионов натрия, а при возбуждении натриевая проницаемость примерно в 20 раз превышает калиевую. В состоянии покоя равные концентрации калия в цитоплазме и натрия во внеклеточной среде должны обеспечить и равное количество положительных зарядов по обе стороны мембраны. Но поскольку проницаемость для ионов калия выше в 25 раз, то калий, выходя из клетки, делает ее поверхность все более положительно заряженной по отношению к внутренней стороне мембраны, около которой все более накапливаются слишком крупные для пор мембраны отрицательно заряженные молекулы аспарагиновой, гистаминовой и других аминокислот, «отпустивших» калий за пределы клетки, но «не дающих» ему уйти далеко благодаря своему отрицательному заряду. С внутренней стороны мембраны копятся отрицательные заряды, а с внешней - положительные. Возникает разность потенциалов. Диффузный ток ионов натрия в протоплазму из внеклеточной жидкости удерживает эту разность на уровне 60-70 мВ, не давая ей возрастать. Диффузный ток ионов натрия в покое в 25 раз слабее, чем встречный ток ионов калия. Ионы натрия, проникая внутрь клетки, снижают величину потенциала покоя, позволяя ей удерживаться на определенном уровне. Таким образом, величина потенциала покоя мышечных и нервных клеток, а также нервных волокон определяется соотношением числа положительно заряженных ионов калия, диффундирующих в единицу времени из клетки наружу, и положительно заряженных ионов натрия, диффундирующих через мембрану в противоположном направлении. Чем это соотношение выше, тем больше величина потенциала покоя, и наоборот.

Вторым препятствием, удерживающим разность потенциалов на определенном уровне, является натрий-калиевый насос (рис. 2.2). Он получил название натрий-калиевого или ионного, поскольку осуществляет активное выведение (выкачивание) из протоплазмы проникающих в нее ионов натрия и введение (нагнетание) в нее ионов калия. Источником энергии для работы ионного насоса является расщепление АТФ (аденозинтрифосфата), которое происходит под воздействием фермента аденозинтрифосфатазы, локализованного в мембране клетки и активируемого теми же ионами, т. е. калием и натрием (нагрий-калий-зависимая АТФ-аза).

Рис. 2.2.

Это крупный белок, превышающий по размеру толщину клеточной мембраны. Молекула этого белка, пронизывая мембрану насквозь, связывает с внутренней стороны преимущественно натрий и АТФ, а с наружной - калий и различные ингибиторы типа глико- зидов. При этом возникает мембранный ток. Благодаря этому току обеспечивается соответствующее направление переноса ионов. Перенос ионов происходит в три этапа. Сначала ион соединяется с молекулой переносчика, образуя комплекс ион-переносчик. Затем этот комплекс проходит через мембрану или переносит через нее заряд. В завершении - ион освобождается от переносчика на противоположной стороне мембраны. Одновременно происходит аналогичный процесс, переносящий ионы в противоположном направлении. Если насос осуществляет перенос одного иона натрия на один ион калия, то он просто поддерживает концентрационный градиент по обе стороны мембраны, но не вносит вклада в создание мембранного потенциала. Чтобы внести этот вклад, ионный насос должен переносить натрий и калий в соотношении 3:2, т. е. на 2 иона калия, поступающих в клетку, из клетки он должен выводить 3 иона натрия. Работая с максимальной нагрузкой, каждый насос способен перекачивать через мембрану около 130 ионов калия и 200 ионов натрия в секунду. Это предельная скорость. В реальных условиях работа каждого насоса регулируется в соответствии с потребностями клетки. У большинства нейронов на один квадратный микрон мембранной поверхности приходится от 100 до 200 ионных насосов. Следовательно, мембрана любой нервной клетки содержит 1 миллион ионных насосов, способных перемещать до 200 миллионов ионов натрия в секунду.

Таким образом, мембранный потенциал (потенциал покоя) создается в результате как пассивных, так и активных механизмов. Степень участия тех или иных механизмов в разных клетках неодинакова, из чего следует, что мембранный потенциал может быть неодинаковым в разных структурах. Активность насосов может зависеть от диаметра нервных волокон: чем тоньше волокно, тем отношение размера поверхности к объему цитоплазмы выше, соответственно, и активность насосов, необходимая для поддержания разницы концентраций ионов на поверхности и внутри волокна, должна быть больше. Другими словами, мембранный потенциал может зависеть от структуры нервной ткани, а значит, и от ее функционального назначения. Электрическая поляризация мембраны - главное условие, обеспечивающее возбудимость клетки. Это ее постоянная готовность к действию. Это запас потенциальной энергии клетки, который она может использовать в случае, если нервной системе понадобится ее немедленная реакция.

Одна из важнейших функций биологической мембраны - генерация и передача биопотенциалов. Это явление лежит в основе возбудимости клеток, регуляции внутриклеточных процессов, работы нервной системы, регуляции мышечного сокращения, рецепции. В медицине на исследование электрических полей, созданных биопотенциалами органов и тканей, основаны диагностические методы: электрокардиография, электроэнцефалография, электромиография и другие. Практикуется и лечебное воздействие на ткани и органы внешними электрическими импульсами при электростимуляции.

В процессе жизнедеятельности в клетках и тканях могут возникать разности электрических потенциалов: Δj

1) окислительно-восстановительные потенциалы - вследствие переноса электронов от одних молекул к другим;

2) мембранные - вследствие градиента концентрации ионов и переноса ионов через мембрану.

Биопотенциалы, регистрируемые в организме, - это в основном мембранные потенциалы.

Мембранным потенциалом называется разность потенциалов между внутренней (цитоплазматической) и наружной поверхностями мембраны:

j м = j нар - j вн. (1)

Прогресс в исследовании биопотенциалов обусловлен:

1) разработкой микроэлектродного метода внутриклеточного измерения потенциалов;

2) созданием специальных усилителей биопотенциалов (УПТ);

3) выбором удачных объектов исследования крупных клеток и среди них гигантского аксона кальмара. Диаметр аксона кальмара достигает 0,5 мм, что в 100 - 1000 больше, чем диаметр аксонов позвоночных животных, в том числе человека. Гигантские размеры аксона имеют большое физиологическое значение -обеспечивают быструю передачу нервного импульса по нервному волокну.

Для биофизики гигантский аксон кальмара послужил великолепным модельным объектом для изучения биопотенциалов. В гигантский аксон кальмара можно ввести микроэлектрод, не нанеся аксону значительных повреждений.

Стеклянный микроэлектрод представляет собой стеклянную микропипетку с оттянутым очень тонким кончиком (рис.5.1).

Металлический электрод такой толщины пластичен и не может проколоть клеточную мембрану, кроме того он поляризуется. Для исключения поляризации электрода используются не­поляризующиеся электроды, например серебряная проволока, покрытая солью AgCl В раствор КС1 или NaCl (желатинизированный агар-агаром), заполняющий микроэлектрод.

Второй электрод - электрод сравнения - располагается в растворе у наружной поверхности клетки. Регистрирующее устройство Р, содержащее усилитель постоянного тока, измеряет мембранный потенциал:

Рис.5.1 - Микроэлектродный метод измерения биопотенциалов

а - стеклянная микропипетка; б - стеклянный микроэлектрод;

в - схема регистрации мембранного потенциала

Микроэлектродный метод дал возможность измерить биопотенциалы не только на гигантском аксоне кальмара, но и на клетках нормальных размеров: нервных волокнах других животных, клетках скелетных мышц, клетках миокарда и других.

Мембранные потенциалы подразделяются на потенциалы покоя и потенциалы действия.

Потенциал покоя - стационарная разность электрических потенциалов, регистрируемая между внутренней и наружной поверхностями мембраны в невозбужденном состоянии.

Потенциал покоя определяется разной концентрацией ионов по разные стороны мембраны и диффузией ионов через мембрану.

Если концентрация какого-либо иона внутри клетки С вн отлична от концентрации этого иона снаружи С нар и мембрана проница­ема для этого иона, возникает поток заряженных частиц через мембрану, вследствие чего нарушается электрическая нейтральность системы, образуется разность потенциалов внутри и снаружи клетки j м = j нар - j вн которая будет препятствовать дальнейшему перемещению ионов через мембрану. При установлении равновесия выравниваются значения электрохимических потенциалов по разные стороны мембраны: m вн = m нар .

Так как m = m 0 + RTlnC + ZFj, то

RTlnC вн + ZFj вн = RTlnC нар + ZFj нар

Отсюдалегко получить формулу Нернста для равновесного мембранного потенциала

j м = j нар - j вн = - RT/ZF´ln(C вн /С нар)

Если мембранный потенциал обусловлен переносом ионов К + ,для которого [К + ] вн > [К + ] нар и Z = +1, равновесный мембранный потенциал

Для ионов Na + : вн < нар, Z = +1,

Если в формуле Нернста перейти от натурального логарифма к десятичному, то для положительного одновалентного иона (Z = +1)

Примем температуру Т=300 К, тогда

Примем в формуле Нернста С вн /С нар ≈100, что по порядку величины соответствуют экспериментальным данным для калия:

lg , и мембранный потенциал

0,06∙2В = 0,12В = 120мВ,

что несколько больше модуля экспериментально измеренных значений потенциала покоя, и, пользуясь формулами электростатики, оценим, какое количество ионов должно перейти из цитоплазмы в неклеточную среду, чтобы создать такую разность потенциалов. Радиус клетки r = 10 мкм = 10 -5 м. Удельная электроемкость мембраны (электроемкость на единицу площади) С уд =10 -2 Ф/м 2 . Площадь мембраны 4πr 2 ≈ 4π∙10 -10 м 2 ≈10 -9 м 2 . Тогда электроемкость мембраны

C=C уд ∙S≈10 -2 ∙10 -9 м 2 .

Абсолютная величина заряда каждого знака на поверхности мембраны, если ее представить себе как конденсатор,

что соответствует

Объем клетки

Изменение концентрации ионов в клетке вследствие выхода из клетки 10 -17 моль ионов составит

Небольшое изменение концентрации по сравнению с изменением концентрации ионов калия внутри клетки, составляет всего 10 -4 % от концентрации калия внутри клетки. Таким образом, чтобы создать равновесный нернстовский мембранный потенциал, через мембрану должно пройти пренебрежимо малое количество ионов по сравнению с общим их количеством в клетке.

Таким образом, потенциал покоя на самом деле ближе к потенциалу, рассчитанному по формуле Нернста для К + .Вместе с тем, обращает на себя внимание значительное расхождение экспериментальных и теоретических значений. Причины расхождения в том, что не учтена проницаемость мембраны для других ионов. Одновременная диффузия через мембрану ионов К + , Na + и С1 - учитывается уравнением Гольдмана.

Уравнение Гольдмана можно вывести из уравнения Нернста-Планка.

Преобразуем это уравнение:

URT=D согласно соотношению Эйнштейна. Примем так называемое приближение постоянного поля Гольдмана. Будем считать напряженность электрического поля в мембране постоянной и равной среднему значению градиента потенциала:

где l – толщина мембраны.

Получим для плотности ионного потока через мембрану:

Обозначим Запишем

Разделим переменные:

Проинтегрируем левую часть дифференциального уравнения в пределах от 0 до 1, а правую от С нар =КС нар до С вн =КС вн (где К – коэффициент распределения)

После потенциирования

Выразим отсюда:

Учитывая, что , получим:

В стационарном случае, когда разность потенциалов - мембранный потенциал - тормозит дальнейший перенос ионов через мембрану, суммарный поток различных ионов становится равным нулю:

j K + + j Na + - j Cl - = 0

Перед j стоит знак минус, учитывающий отрицательный заряд иона хлора. Однако, так как в создании мембранного потенциала участвуют различные ионы, равновесие при этом не наступает, потоки различных ионов не равны нулю по отдельности. Если учесть только потоки j K + и j Na + , то j K+ +j Na+ =0 , или j K = - j Na + и, подставив, получим:

Поскольку,

Если учесть еще и поток ионов С1 - , то, повторив предыдущие рассуждения, можно получить уравнение для мембранного потенциала, созданного потоками через мембрану трех видов ионов, уравнение Гольдмана:

В числителе выражения, стоящего под знаком логарифма, представлены концентрации [К + ] ВН, BH , но [С1 - ] НАР , а в знаменателе - [К + ] НАР, H АР, но [С1 - ] ВН , так как ионы хлора отрицательно заряжены.

В состоянии покоя проницаемость мембраны для ионов К + значительно больше, чем для Na + , и больше, чем для С1 - :

P K >>P Na , P K >P Na .

Для аксона кальмара, например,

P K:P Na:P Cl =1:0,04:0,45.

Переписав уравнение Гольдмана в виде:

в случае, когда проницаемость мембраны для ионов натрия и хлора значительно меньше проницаемости для калия:

P Na << P K , P Cl << P K ,

Таким образом, уравнение Нернста - частный случай уравнения Гольдмана.

Мембранный потенциал, рассчитанный по уравнению Гольдмана, оказался по абсолютной величине меньше мембранного потенциала, рассчитанного по формуле Нернста» ближе к экспериментальным его значениям в крупных клетках. И формула Нернста, и уравнение Гольдмана не учитывают активного транспорта ионов через мембрану, наличия в мембранах электрогенных (вызывающих разделение зарядов, а следовательно и возникновение разности потенциалов) ионных насосов, играющих важную роль в поддержании ионного равновесия в мелких клетках. В цитоплазматической мембране работают К + -Nа + -АТФазы, перекачивающие калий внутрь клетки, а натрий из клетки. С учетом работы электрогенных ионных насосов для мембранного потенциала было получено уравнение Томаса:

где m - отношение количества ионов натрия к количеству ионов калия, перекачиваемых ионными насосами через мембрану. Чаще всего К + -Nа + -АТФаза работает в режиме, когда m = 3/2, m всегда больше 1. (Нет ионных насосов, перекачивающих Сl , поэтому в уравнении Томаса отсутствуют члены Р Сl [Сl - ].)

Коэффициент m > 1 усиливает вклад градиента концентрации калия в создание мембранного потенциала, поэтому мембранный потенциал, рассчитанный по Томасу, больше по абсолютной величине, чем мембранный потенциал, рассчитанный по Гольману, и дает совпадение с экспериментальными значениями для мелких клеток.

Нарушение биоэнергетических процессов в клетке и работы K + -Na + -АТФазы приводит к уменьшению |φ м |, в этом случае мембранный потенциал лучше описывается уравнением Гольдмана.

Повреждение клеточной мембраны приводит к повышению проницаемости клеточных мембран для всех ионов: к повышению и P к, и P Na , и P сl Вследствие уменьшение различия проницаемостей абсолютное значение мембранного потенциала |φ м | снижается.

Для сильно поврежденных клеток |φ м | еще меньше, но сохраняется отрицательный мембранный потенциал |φ м | за счет содержащихся в клетке полианионов - отрицательно заряженных белков, нуклеиновых кислот и других крупных молекул, не могущих проникнуть через мембрану (доннановский потенциал).

Потенциал действия

Посредством электрических нервных импульсов (потенциалов действия) в живом организме передается информация от рецепторов к нейронам мозга и от нейронов мозга к мышцам. Живой организм является полностью электрифицированной системой. Без электричества нет жизни.

Потенциал действия был открыт раньше потенциала покоя. Животное электричество известно давно. Разряды электрического угря (происходящие при напряжении до 600 В, с током около 60 А и длительностью порядка миллисекунды) использовались медициной еще в Древнем Риме для лечения подагры, головной боли, эпилепсии. Электрический нервный импульс открыл Луиджи Гальвани, профессор анатомии в г. Болонья. Результаты его электрофизиологических опытов изложены в книге "Трактат о силах электричества при мышечном движении" (1791 г.). Гальвани открыл, что мышечные сокращения конечностей препарированной лягушки могут вызваться электрическим импульсом и что сама живая система является источником электрического импульса. Великое открытие Гальвани сыграло выдающуюся роль в развитии физики, электротехники, электрохимии, физиологии, биофизикии и медицины. Однако, огромная популярность идей Гальвани привела к их профанациям, следы которых остались до нашего времени (гальванизация трупов, гальванизм прикосновений взглядов и т.д.), что вызывало недоверие к экспериментам Гальвани ученых-физиков. Младший современник Гальвани профессор физики Алессандро Вольта был яростым противником идеи животного электричества (за исключением особых случаев электрических рыб: электрического угря и электрического ската). В своих экспериментах он исключил биологический объект и показал, что электрический ток может быть получен при контакте набора металлов, разделенных электролитом (вольтов столб). Так был открыт химический источник тока (названный, однако, позже, в честь его научного противника гальваническим элементом).

В XIX веке утвердилось примитивное представление о распространении электрических токов по нервам, как по проводам. Однако Гельмгольцем (вторая половина XIX века) было показано, что скорость распространения нервного импульса составляет лишь 1-100 м/с, это значительно меньше, чем скорость распространения электрического импульса по проводам до 3 10 8 м/с. Поэтому к концу XIX века гипотеза электрической природы нервного импульса была отвергнута большинством физиологов. Было выдвинуто предположение о распространении по нервным волокнам химической реакции. На самом деле, как было показано позже, медленное распространение электрического нервного импульса связано с медленной перезарядкой конденсаторов, которые представляют собой клеточные мембраны, через большие сопротивления. Постоянная времени перезарядки мембраны τ= RC велика, так как велики емкость мембраны (С) и сопротивление R нервного волокна.

То, что нервный импульс представляет собой импульс электрического тока, было доказано лишь к середине 20-го века, в основном в работах английского физиолога А. Ходжкина и его сотрудников. В1963 году Ходжкину, Хаксли и Иклсу была присуждена Нобелевская премия по медицине "за оперирование нервных клеток".

Потенциалом действия (ПД) называется электрический импульс, обусловленный изменением ионной проницаемости мембраны и связанный с распространением по нервам и мышцам волны возбуждения.

Опыты по исследованию потенциала действия проведены (в основном Ходжкиным и его сотрудниками) на гигантских аксона кальмара методом микроэлектродов с использованием высокоомных измерителей напряжения, а также методом меченых атомов. На риспоказаны схема опытов и результаты исследований.

В опытах по исследованию потенциала действия использовали два микроэлектрода, введенных в аксон. На первый микроэлектрод подается импульс с амплитудой V от генератора Г прямоугольных импульсов, меняющий мембранный потенциал. Мембранный потенциал измеряется при помощи второго микроэлектрода высокоомным регистратором напряжения Р.

Рис.5.2 - Исследование потенциала действия:

а - схема опыта (Г - генератор импульсов, Р - регистратор напряжения); б - потенциал действия (φ п м - потенциал покоя, φ рев м - потенциал реверсии, φ д м - амплитуда потенциала действия, φ пор м – пороговый потенциал)

Возбуждающий импульс вызывает лишь на короткое время смещение мембранного потенциала, который быстро пропадает и восстанавливается потенциал покоя. В том случае, когда возбуждающий импульс смещается еще дальше в отрицательную сторону, он сопровождается гиперполяризацией мембраны. Также не формируется потенциал действия, когда возбуждающий импульс положительный (деполяризующий), но его амплитуда меньше порогового значения V nop . Однако, если амплитуда положительного, деполяризующего импульса окажется больше значения V nop , φ м становится больше φ пор м и в мембране развивается процесс, в результате которого происходит резкое повышение мембранного потенциала и мембранный потенциал φ м даже меняет свой знак - становится положительным (φ вн >φ нар).

Достигнув некоторого положительного значения φ рев - потенциала реверсии, мембранный потенциал возвращается к значению потенциала покоя φ п м, совершив нечто вроде затухающего колебания. В нервных волокнах и скелетных мышцах длительность потенциала действия около 1 мс (а в сердечной мышце около 300 мс. После снятия возбуждения еще в течение 1 -3 мс в мембране наблюдаются некоторые остаточные явления, во время которых мембрана рефрактерна (невозбудима).

Новый деполяризующий потенциал V > V nop может вызвать образование нового потенциала действия только после полного возвращения мембраны в состояние покоя. Причем амплитуда потенциала действия

не зависит от амплитуды деполяризующего потенциала (если только V > V nop). Если в покое мембрана поляризована (потенциал цитоплазмы отрицателен по отношению к внеклеточной среде), то при возбуждении происходит деполяризация мембраны (потенциал внутри клетки положителен) и после снятия возбуждения происходит реполяризация мембраны.

Характерные свойства потенциала действия:

1) наличие порогового значения деполяризующего потенциала;

2) закон "все или ничего", то есть, если деполяризующий потенциал больше порогового, развивается потенциал действия, амплитуда которого не зависит от амплитуды возбуждающего импульса и нет потенциала действия, если амплитуда деполяризующего потенциала меньше пороговой;

3) есть период рефрактерности, невозбудимости мембраны во время развития потенциала действия и остаточных явлений после снятия возбуждения;

4) в момент возбуждения резко уменьшается сопротивление мембраны (у аксона кальмара от 0,1 Ом м 2 в покое до 0,0025 Ом м 2 при возбуждении).

Если обратиться к данным для значений равновесных нернстовских потенциалов, созданных различными ионами, естественно предположить, что положительный потенциал реверсии имеет натриевую природу, поскольку именно диффузия натрия создает положительную разность потенциалов между внутренней и наружной поверхностями мембраны.

Можно менять амплитуду импульса потенциала действия, изменяя концентрацию натрия в наружной среде. При уменьшении наружной концентрации натрия амплитуда потенциала действия уменьшается, так как меняется потенциал реверсии. Если из окружающей клетку среды полностью удалить натрий, потенциал действия вообще не возникает.

Опыты, проведенные с радиоактивным изотопом натрия, позволили установить, что при возбуждении проницаемость для натрия резко возрастает. Если в состоянии покоя соотношение коэффициентов проницаемости мембраны аксона кальмара для разных ионов:

P K: P Na: P Cl = 1: 0,04: 0,45

то в состоянии возбуждения:

P K: P Na: P Cl = 1: 20: 0,45

то есть, по сравнению с невозбужденным состоянием, при возбуждении коэффициент проницаемости для натрия возрастает в 500 раз.

Расчеты мембранного потенциала реверсии по уравнению Гольдмана, если в него подставить значения проницаемостей мембраны для возбужденного состояния, совпадают с экспериментальными данными.

Возбуждение мембраны описывается уравнениями Ходжкина-Хаксли. Одно из уравнений Ходжкина-Хаксли имеет вид:

где I м - ток через мембрану, С м - емкость мембраны, ∑I i - сумма ионных токов через мембрану.

Электрический ток через мембрану складывается из ионных токов: ионов калия - I k + , натрия - I Na + и других ионов, в том числе Сl, так называемого тока утечки I k , а также емкостного тока. Емкостной ток обусловлен перезарядкой конденсатора, который представляет собой мембрана, перетеканием зарядов с одной ее поверхности на другую. Его величина определяется количеством заряда, перетекающего с одной обкладки на другую за единицу времени dq/dt, а поскольку заряд конденсатоpa q = С м ∆φ = С м φ м, то емкостной ток С М . Полный мембранный ток

Согласно теории Ходжкина-Хаксли, возбуждение элемента мембраны связано с изменениями проводимости мембраны для ионов Na + и К + : g K и g Na .

Проводимости мембраны сложным образом зависят от мембранного потенциала и времени.

Обнаружено, что, если поднять мембранный потенциал (φ м выше порогового, сначала течет ток внутрь клетки, а затем из клетки наружу).

В экспериментах, проведенных Ходжкиным, Хаксли, Бейкером, Шоу, было доказано, что фаза I мембранного тока связана с потоком ионов натрия из окружающей среды (где концентрация натрия больше) в клетку (где она меньше), а фаза II объясняется вытеканием ионов калия из клетки наружу.

В своих опытах Ходжкин и Хаксли изменяли ионный состав окружающего раствора. Было обнаружено, что, если снаружи убирали натрий, первая фаза мембранного тока (ток внутрь клетки) пропадала. Следовательно, на самом деле, первая фаза развития потенциала действия связана с увеличением проницаемости мембраны для ионов натрия. Поток положительных частиц в клетку приводит к деполяризации мембраны - внутренняя ее поверхность заряжается положительно по отношению к наружной.

Во второй фазе резко увеличивается проницаемость мембраны для калия и из клетки наружу выходят положительно заряженные ионы калия, в то время как натриевый ток уменьшается. Ионный механизм развития потенциала действия был окончательно доказан в решающем эксперименте Ходжкина, Бейкера и Шоу, в котором аксоплазму препарированного аксона заменили на наружный раствор, а ионный состав наружного раствора сделали таким же, как у нормальной аксоплазмы. При такой замене ионных составов изменила знак разность потенциалов на мембране. Теперь в покое внутренняя ее поверхность была заряжена положительно по отношению к наружной. А потенциал действия оказался отрицательным.

Выдвинута гипотеза, что селективное (избирательное) изменение ионной проницаемости возбужденной мембраны: сначала для Na + , а потом для К + - объясняется тем, что в мембране имеются специальные ионные каналы. Существуют отдельно натриевые и калиевые каналы, которые открываются и закрываются во время прохождения через данный участок мембраны нервного импульса. В первой фазе - открываются натриевые каналы, во второй фазе - калиевые. Соответственно, сначала закрываются натриевые каналы, а затем калиевые. Открывание и закрывание ионных каналов вызывается изменением мембранного потенциала.

Одно из доказательств наличия в мембране ионных каналов - существование веществ, блокирующих ионные потоки через мембрану. Так, содержащийся в рыбе фугу тетродотоксин блокирует поступление внутрь клетки натрия и, таким образом, нарушает передачу нервного импульса, что может привести к летальному исходу. Доказано, что тетродотоксин не влияет на проницаемость клетки для калия, значит, ионы натрия и калия на самом деле проходят через разные каналы. Из-за своего специфического строения молекулы тетродотоксина, по-видимому, застревают в натриевых каналах. Подсчитав число застрявших в мембране молекул тетродотоксина, удалось определить количество натриевых каналов. В разных нервных волокнах позвоночных оно было разным - от 3 до 75 каналов на один квадратный микрометр площади мембраны (для сравнения количество молекул фосфолипидов ≈ 2 10 6 1/мкм 2).

Был обнаружен и специфический ингибитор калиевых каналов - тетраэтиламмоний . Если обработать мембрану тетродотоксином, блокирующим натриевые каналы, в опытах с фиксацией мембранного потенциала пропадает первая фаза, а тетраэтиламмоний прекращающий перенос через мембрану калия, вызывает исчезновение второй фазы.

Таким образом, установлено, что формирование потенциала действия вызывается ионными потоками через мембрану: сначала ионов натрия внутрь клетки, а затем - ионов калия из клетки в наружный раствор, что связано с изменением проводимости мембраны для ионов калия и натрия.



erkas.ru - Обустройство лодки. Резиновые и пластиковые. Моторы для лодок