Равна температура кипения. При какой температуре вода кипит? Зависимость температуры кипения от давления

Кипе́ние - процесс интенсивного парообразования , который происходит в жидкости, как на свободной её поверхности, так и внутри её структуры. При этом в объёме жидкости возникают границы разделения фаз , то есть на стенках сосуда образуются пузырьки, которые содержат воздух и насыщенный пар . Кипение, как и испарение , является одним из способов парообразования. В отличие от испарения, кипение может происходить лишь при определённой температуре и давлении . Температура, при которой происходит кипение жидкости, находящейся под постоянным давлением, называется температурой кипения . Как правило, температура кипения при нормальном атмосферном давлении приводится как одна из основных характеристик химически чистых веществ . Процессы кипения широко применяются в различных областях человеческой деятельности. Например, кипячение является одним из распространённых способов физической дезинфекции питьевой воды. Кипячение воды представляет собой процесс нагревания её до температуры кипения с целью получения кипятка .

На процесс образования пузырьков можно влиять с помощью давления, звуковых волн, ионизации и других факторов возникновения центров парообразования. В частности, именно на принципе вскипания микрообъёмов жидкости от ионизации при прохождении заряженных частиц работает пузырьковая камера .

Энциклопедичный YouTube

    1 / 5

    ✪ Урок 192. Кипение жидкости

    ✪ Критическое состояние эфира.

    ✪ Гелий - Сверхтекучий и Самый ХОЛОДНЫЙ элемент!

    ✪ 🔥 Взрываются ли яйца в космосе? Мгновенный вакуум.

    ✪ Физическая химия. Лекция 2. Термодинамика фазовых равновесий

    Субтитры

Термодинамические особенности

По мере нагрева жидкости на греющей поверхности образуются пузырьки пара, внутрь которых испаряется жидкость. При определенной температуре давление насыщенного пара внутри пузырька становится равным наружному давлению. В этот момент пузырек отрывается от стенки, и жидкость начинает кипеть. Таким образом, если испарение происходит при любой температуре , то кипение - при одной, определенной для текущего давления. Когда процесс кипения начался, то несмотря на продолжающийся подвод тепла температура жидкости изменяется незначительно, пока вся жидкость не превратится в пар. Температура, при которой происходит кипение жидкости, находящейся под постоянным давлением, называется температурой кипения или температурой насыщения . Изменение температуры жидкости в процессе кипения называется температурным глайдом . Для химически чистых жидкостей или азеотропных смесей температурный глайд является нулевым. С увеличением давления, согласно уравнению Клапейрона - Клаузиуса , температура насыщения возрастает:

d P d T S = r T S Δ v > 0 {\displaystyle {\frac {\mathrm {d} P}{\mathrm {d} T_{S}}}={\frac {r}{T_{S}\,\Delta v}}>0} . где r {\displaystyle r} - удельная теплота парообразования; Δ v {\displaystyle \Delta v} - изменение удельного объёма тела при фазовом переходе.

Линия насыщения

Особенности кипения

В кипящей жидкости устанавливается определённое распределение температуры: у поверхностей нагрева (стенок сосуда, труб и т. п.) жидкость заметно перегрета T > T S {\displaystyle T>T_{S}} . Величина перегрева зависит от ряда физико-химических свойств как самой жидкости, так и граничных твёрдых поверхностей. Тщательно очищенные жидкости, лишённые растворённых газов (воздуха), можно при соблюдении особых мер предосторожности перегреть на десятки градусов без закипания. Когда такая перегретая жидкость в конце концов вскипает, то процесс кипения протекает весьма бурно, напоминая взрыв . Вскипание сопровождается расплёскиванием жидкости, гидравлическими ударами , иногда даже разрушением сосудов. Теплота перегрева расходуется на парообразование, поэтому жидкость быстро охлаждается до температуры насыщенного пара, с которым она находится в равновесии. Возможность значительного перегрева чистой жидкости без кипения объясняется затрудненностью возникновения начальных маленьких пузырьков (зародышей), их образованию мешает значительное взаимное притяжение молекул жидкости. Иначе обстоит дело, когда жидкость содержит растворенные газы и различные мельчайшие взвешенные частицы. В этом случае уже незначительный перегрев (на десятые доли градуса) вызывает устойчивое и спокойное кипение, так как начальными зародышами паровой фазы служат газовые пузырьки и твердые частицы. Основные центры парообразования находятся в точках нагреваемой поверхности, где имеются мельчайшие поры с адсорбированным газом, а также различные неоднородности, включения и налеты, снижающие молекулярное сцепление жидкости с поверхностью.

При вынужденной конвекции кипение имеет ряд особенностей, наиболее существенные из них - влияние характеристик потока на зависимость q S = f (T C − T F ¯) {\displaystyle q_{S}=f(T_{C}-{\overline {T_{F}}})} . Наиболее сильное влияние оказывают такие характеристики, как массовая скорость потока жидкости и паросодержание x {\displaystyle x} . При установившемся кипении движущейся в трубе жидкости, параметры среды (в первую очередь - паросодержание) изменяются вдоль потока, а вместе с ним сменяются режимы течения и теплоотдача.

В большинстве случае кипение в трубе можно упрощенно представить в виде трех зон (на примере кипения в длиной трубе при малых ρ w ¯ {\displaystyle {\overline {\rho w}}} и ):

На данном примере можно более подробно рассмотреть изменение характера кипения и связанные с этим температуры обогревающей стенки трубы и средней температуры жидкости. На вход в парогенерирующую трубу подается недогретая до кипения жидкость (точка A {\displaystyle A} ). В случае постоянной величины теплового потока от стенки q S {\displaystyle q_{S}} , средняя температура жидкости T F ¯ {\displaystyle {\overline {T_{F}}}} и температура стенки T C {\displaystyle T_{C}} , растут линейно. В момент, когда температура стенки начинает превышать температуру насыщения T S {\displaystyle T_{S}} , на обогревающей поверхности может начаться формирование пузырьков. Таким образом, начинается кипение в пристеной области, несмотря на то, что средняя температура жидкости остается меньше температуры насыщения ( B − C {\displaystyle B-C} ). Это явление носит название кипения недогретой жидкости . Значение энтальпийного паросодержания, при котором начинается кипение недогретой жидкости имеет отрицательное значение x = x H K {\displaystyle x=x_{HK}} . После достижения жидкостью температуры насыщения x = 0 {\displaystyle x=0} начинается пузырьковое кипение по всему объёму жидкости. Эта область характеризуется интенсивным перемешиванием жидкости и, как следствие, высокими коэффициентами теплоотдачи и низкими перепадами температур.

По мере продвижения двухфазной смеси в область высоких паросодержаний сменяются режимы течения двухфазного потока, и при некотором паросодержании x = x K P {\displaystyle x=x_{KP}} наступает кризис теплоотдачи: контакт жидкости с поверхностью прекращается и температура стенки возрастает ( E {\displaystyle E} ). Часто кризис теплоотдачи при кипении представляет переход от дисперсно-кольцевого режима кипения ( D − E {\displaystyle D-E} ) к дисперсному ( E − F − G {\displaystyle E-F-G} ). Количество влаги в каплях с ростом паросодержания уменьшается, что приводит к возрастанию скорости и небольшому увеличению теплоотдачи (температура поверхности стенки при этом немного снижается, ( F − G {\displaystyle F-G} )).

При иной массовой скорости жидкости ρ w ¯ {\displaystyle {\overline {\rho w}}} или величине теплового потока q S {\displaystyle q_{S}} , характер кипения в трубе может измениться. Так, в случае больших ρ w ¯ {\displaystyle {\overline {\rho w}}} и q S {\displaystyle q_{S}} , режим кризиса теплообмена может сформироваться ещё на этапе кипения недогретой жидкости. В этом случае формируется пленочный режим кипения, а ядро потока представляет собой стержень недогретой до температуры насыщения жидкости, отделенной от стенки трубы пленкой пара.

Температуры кипения для простых веществ

В приведенной таблице элементов Д. И. Менделеева для каждого элемента указаны:

Группа →
I A

II A

III B

IV B

V B

VI B

VII B

VIII B

VIII B

VIII B

I B

II B

III A

IV A

V A

VI A

VII A

VIII A
Период
1 1

-253
0,449
1,008

2

-268
0,0845
4,003
2 3

1340
145,9
6,941
4

2477
292,4
9,012

5

3927
489,7
10,81
6

~4850
355,8
12,01
7

-196
2,793
14,01
8

-183
3,410
16,00
9

-188
3,270
19,00
10

-246
1,733
20,18
3 11

883
96,96
22,99
12

1090
127,4
24,33

13

2467
293,4
26,98
14

2355
384,2
28,09
15

277
12,13
30,97
16

445
9,6
32,07
17

-34
10,2
35,45
18

-186
6,447
39,95
4 19

759
79,87
39,10
20

1484
153,6
40,08
21

2830
314,2
44,96
22

3287
421
47,87
23

3409
452
50,94
24

2672
344,3
52,00
25

1962
226
54,94
26

2750
349,6
55,85
27

2927
376,5
58,93
28

2913
370,4
58,69
29

2567
300,3
63,55
30

907
115,3
65,41
31

2204
258,7
69,71
32

2820
330,9
72,64
33

616
34,76
74,92
34

221
26,3
78,96
35

59
15,44
79,9
36

-153
9,029
83,80
5 37

688
72,22
85,47
38

1382
144
87,62
39

2226
363
88,91
40

Кипение - это явление, которое характерно для любых жидкостей. Проявляется оно тем, что по всему раствору образуются пузырьки пара. Стоит отметить, что кипение наблюдается лишь при определенной температуре и зависит от вида вещества. Данный показатель является важной характеристикой. Он может применяться для разделения жидких соединений, а также для определения их чистоты.

Данный показатель в различных веществах отличается. Так, температура кипения моторного масла достигает 300-490°С, а для воды она составляет 100°С. Эта зависит от нескольких параметров, в том числе от условий закипания и состава вещества, которое нагревают.

Надо сказать, что температура кипения имеет определенные особенности. Так, на поверхности жидкости создается давление пара, которое образуется довольно медленно при наличии свободной поверхности. Если же речь идет о середине среды, то ее можно нагреть значительно больше, чем при кипении. Этим объясняется явление «перегрева», при котором жидкость не кипит, но характеризуется показателями.

Следует отметить, что температура кипения определяется с помощью специального термометра, который надо погружать в пары вещества, а не в жидкость. При этом ртутный столбик не всегда удается погрузить полностью, поэтому нужно учитывать поправку термометра. Для разных жидкостей эта величина разная. В среднем считают, что изменение атмосферного давления примерно на 26 мм приводит к тому, что температура кипения меняется на один градус.

Каким образом данный показатель помогает определять чистоту смесей и растворов? Однородная жидкость характеризуется постоянной температурой кипения. Ее изменение - верный признак наличия посторонних примесей, которые можно выделить в процессе перегонки, а также с помощью специальных приборов - дефлегматоров.

Стоит отметить, что в некоторых случаях специально используются сочетания различных веществ. Это придает жидкости специфические особенности. Так, например, чистый этиленгликоль закипает при 197°С, а температура кипения тосола несколько меньше - около 110°С.

Переход жидкости в пар происходит именно тогда, когда достигается соответствующая температура кипения. При этом над поверхностью жидкости имеет одинаковое числовое значение с внешним давлением, что и ведет к образованию по всему объему пузырьков.

Надо сказать, что кипение проходит при одинаковой температуре, но при уменьшении или увеличении внешнего давления можно наблюдать ее соответствующие изменения.

Этим можно объяснить явление, когда еда в горах готовится дольше, поскольку при давлении около 60кПа уже при 85°С. По этой же причине блюда в скороварке готовятся намного быстрее из-за того, что в ней давление повышается, а это ведет к сопутствующему увеличению температуры кипящей жидкости.

Следует отметить, что кипячение является наиболее распространенным способом физической дезинфекции. Без данного процесса невозможно приготовить любое блюдо. Он также оказывается важным для с целью получения более чистых исходных веществ.

Задача состоит из двух этапов - установить зависимость атмосферного давления от высоты и зависимость температуры кипения от давления. Начнем с последнего, как с более интересного.

Кипение представляет собой фазовый переход первого рода (вода сменяет агрегатное состояние из жидкого на газообразное).
Фазовый переход первого рода описывается уравнением Клапейрона:
,
где
- удельная теплота фазового перехода, которая численно равна количеству теплоты сообщаемой единице массы вещества для осуществления фазового перехода,
- температура фазового перехода,
- изменение удельного объема при переходе

Клаузиус упростил уравнение Клапейрона для случаев испарения и возгонки, предположив, что

  1. Пар подчиняется закону идеального газа
  2. Удельный объем жидкости много меньше удельного объема пара

Из пункта один следует, что состояние пара можно описать уравнением Менделеева-Клапейрона
,
а из пункта два - что удельным объемом жидкости можно пренебречь.

Таким образом, уравнение Клапейрона принимает вид
,
где удельный объем можно выразить через
,
и окончательно

разделяя переменные, получим

Проинтегрировав левую часть от до , а правую от до , т.е. от одной точки до другой точки , лежащей на линии равновесия жидкость-пар, получим уравнение

называемое уравнением Клаузиуса-Клапейрона.

Собственно, это и есть искомая зависимость температуры кипения от давления.

Проведем еще пару преобразований
,
здесь
- молярная масса воды, 18 г/моль

Универсальная газовая постоянная, 8.31 Дж/(моль × К)

Удельная теплота испарения воды 2.3 × 10 6 Дж/кг

Теперь осталось установить зависимость атмосферного давления от высоты. Здесь мы воспользуемся барометрической формулой (другой у нас все равно нет):

или
,
здесь
- молярная масса воздуха, 29 г/моль
- универсальная газовая постоянная, 8.31 Дж/(моль×К)
- ускорение силы тяжести, 9.81 м/(с×с)
- температура воздуха

Значения, относящиеся к воздуху, пометим индексом v, к воде - h
Приравняв и избавившись от экспоненты, получим

Ну и итоговая формула

На самом деле реальное давление воздуха не следует барометрической формуле, так как при больших перепадах высот температуру воздуха нельзя считать постоянной. Кроме того, ускорение свободного падения зависит от географической широты, а атмосферное давление - еще и от концентрации паров воды. То есть значение по этой формуле мы получим приближенное. Поэтому ниже я включил еще один калькулятор, который использует использует формулу для расчет температуры кипения в зависимости от давления воздуха в миллиметрах ртутного столба.

Калькулятор зависимости температуры кипения от высоты.

Над всеми жидкостями в результате их испарения устанавливается равновесие между жидкостью и паром, а следовательно, и определенное давление пара. Величина этого давления зависит от природы жидкости и от температуры. С повышением температуры увеличивается кинетическая энергия молекул в жидкости, все большее их количество способно перейти в газовую фазу и следовательно, давление пара над жидкостью возрастает (рисунок 4).

Рисунок 4 – Кривая давления водяного пара

Температуру, при которой давление пара становится равным внешнему давлению, называют температурой кипения. Точка пересечения (рисунок 4) горизонтальной прямой, отвечающей давлению 760 мм рт. ст., и кривой давления пара соответствуеттемпературе кипения при нормальном давлении. Любая жидкость, не разлагающаяся при нагревании до температуры, при которой давление пара становится равным 760 мм рт. ст., имеет свою характерную температуру кипения при нормальном атмосферном давлении. На рисунке 4 видно также, что при давлении 200 мм рт. ст. вода кипела бы приблизительно при 66С. Эту зависимость температуры кипения от давления используют в лабораторной практике и промышленности для перегонки без разложения веществ, кипящих при высоких температурах (вакуумная перегонка). В ряде справочных и учебных пособий приведены номограммы, позволяющие связать между собой температуры кипения при атмосферном давлении и в вакууме, т. е. определить то максимальное остаточное давление, которое должно быть в перегонной установке, чтобы вещество перегонялось ниже температуры его разложения (см., например, /3, с. 32/).

Этой же цели (очистка высококипящих веществ) служат и другие модификации перегонки. Например, перегонка с водяным паром позволяет перегнать высококипящее вещество при атмосферном давлении, однако давление паров над поверхностью жидкости, равное атмосферному, складывается из суммы парциальных давлений самого вещества и паров воды. Водяной пар в этом способе продувают (барботируют) через толщу вещества в перегонном кубе.

В большинстве случаев определение температуры кипения производится при перегонке вещества в процессе его очистки. В случае необходимости определение температуры кипения малого количества жидкости можно пользоваться микрометодом Сиволобова (рисунок 6).

Для его проведения можно использовать стандартный прибор для определения температуры плавления, описанный выше (рисунок 5). В запаянную с одного конца тонкостенную стеклянную трубку (6) – диаметр ~ 3 мм – помещают каплю жидкости. В трубку опускают капилляр (4), запаянный с верхнего конца, прикрепляют трубку к термометру резинкой (5) и нагревают в приборе до тех пор, пока из капилляра не начнут выходить пузырьки непрерывной струей. Отмечают температуру, при которой началось непрерывное выделение пузырьков. Она соответствует температуре кипения жидкости. Обязательно записывают атмосферное давление по барометру. По значению температуры кипения можно вещество идентифицировать и определить его чистоту.

Над всеми жидкостями в результате их испарения устанавливается равновесие между жидкостью и паром, а следовательно, и определенное давление пара. Величина этого давления зависит от природы жидкости и от температуры. С повышением температуры увеличивается кинетическая энергия молекул в жидкости, все большее их количество способно перейти в газовую фазу и следовательно, давление пара над жидкостью возрастает (рисунок 4).

Рисунок 4 – Кривая давления водяного пара

Температуру, при которой давление пара становится равным внешнему давлению, называют температурой кипения. Точка пересечения (рисунок 4) горизонтальной прямой, отвечающей давлению 760 мм рт. ст., и кривой давления пара соответствует температуре кипения при нормальном давлении. Любая жидкость, не разлагающаяся при нагревании до температуры, при которой давление пара становится равным 760 мм рт. ст., имеет свою характерную температуру кипения при нормальном атмосферном давлении. На рисунке 4 видно также, что при давлении 200 мм рт. ст. вода кипела бы приблизительно при 66 °С. Эту зависимость температуры кипения от давления используют в лабораторной практике и промышленности для перегонки без разложения веществ, кипящих при высоких температурах (вакуумная перегонка). В ряде справочных и учебных пособий приведены номограммы, позволяющие связать между собой температуры кипения при атмосферном давлении и в вакууме, т. е. определить то максимальное остаточное давление, которое должно быть в перегонной установке, чтобы вещество перегонялось ниже температуры его разложения (см., например, /3, с. 32/).

Этой же цели (очистка высококипящих веществ) служат и другие модификации перегонки. Например, перегонка с водяным паром позволяет перегнать высококипящее вещество при атмосферном давлении, однако давление паров над поверхностью жидкости, равное атмосферному, складывается из суммы парциальных давлений самого вещества и паров воды. Водяной пар в этом способе продувают (барботируют) через толщу вещества в перегонном кубе.

В большинстве случаев определение температуры кипения производится при перегонке вещества в процессе его очистки. В случае необходимости определение температуры кипения малого количества жидкости можно пользоваться микрометодом Сиволобова (рисунок 6).

Для его проведения можно использовать стандартный прибор для определения температуры плавления, описанный выше (рисунок 5). В запаянную с одного конца тонкостенную стеклянную трубку (6) – диаметр ~ 3 мм – помещают каплю жидкости. В трубку опускают капилляр (4), запаянный с верхнего конца, прикрепляют трубку к термометру резинкой (5) и нагревают в приборе до тех пор, пока из капилляра не начнут выходить пузырьки непрерывной струей. Отмечают температуру, при которой началось непрерывное выделение пузырьков. Она соответствует температуре кипения жидкости. Обязательно записывают атмосферное давление по барометру. По значению температуры кипения можно вещество идентифицировать и определить его чистоту.



erkas.ru - Обустройство лодки. Резиновые и пластиковые. Моторы для лодок