Реакция окисления гексена 3 перманганатом калия в. Реакции окисления органических веществ

Алкены – это углеводороды, в молекулах которых есть ОДНА двойная С=С связь.

Номенклатура алкенов: в названии появляется суффикс -ЕН.

Первый член гомологического ряда – С2Н4 (этен).

Для простейших алкенов применяются также исторически сложившиеся названия:

· этилен (этен),

· пропилен (пропен),

В номенклатуре часто используются следующие одновалентные радикалы алкенов:

СН2-СН=СН2

Виды изомерии алкенов:

1. Изомерия углеродного скелета: (начиная с С4Н8 – бутен и 2-метилпропен)

2. Изомерия положения кратной связи: (начиная с С4Н8): бутен-1 и бутен-2.

3. Межклассовая изомерия: с циклоалканами (начиная с пропена):

C4H8 - бутен и циклобутан.

4. Пространственная изомерия алкенов:

Из-за того, что вокруг двойной связи невозможно свободное вращение, становится возможной цис-транс- изомерия .

Алкены, имеющие у каждого из двух атомов углерода при двойной связи различные заместители , могут существовать в виде двух изомеров, отличающихся расположением заместителей относительно плоскости π-связи:

Химические свойства алкенов.

Для алкенов характерны:

· реакции присоединения к двойной связи,

· реакции окисления,

· реакции замещения в «боковой цепи».

1. Реакции присоединения по двойной связи: менее прочная π-связь разрывается, образуется насыщенное соединение.

Это реакции электрофильного присоединения - АЕ.

1) Гидрирование:

СН3-СН=СН2 + Н2 à CH3-CH2-CH3

2) Галогенирование:

СН3-СН=СН2 + Br2 (раствор)à CH3-CHBr-CH2Br

Обесцвечивание бромной воды – качественная реакция на двойную связь.

3) Гидрогалогенирование:

СН3-СН=СН2 + НBr à CH3-CHBr-CH3

(ПРАВИЛО МАРКОВНИКОВА: водород присоединяется к наиболее гидрированному атому углерода).

4) Гидратация - присоединение воды:

СН3-СН=СН2 + НОН à CH3-CH-CH3

(присоединение также происходит по праилу Марковникова)

2. Присоединение бромоводорода в присутствии пероксидов (эффект Хараша) - это радикальное присоединение - АR

СН3-СН=СН2 + HBr -(Н2О2)à СН3-СН2-СН2Br

(реакция с бромоводородом в присутствии пероксида протекает против правила Марковникова )

3. Горение – полное окисление алкенов кислородом до углекислого газа и воды.

С2Н4 + 3О2 = 2СО2 + 2Н2О

4. Мягкое окисление алкенов – реакция Вагнера : реакция с холодным водным раствором перманганата калия.

3СН3-СН=СН2 + 2KMnO4 + 4H2O à 2MnO2 + 2KOH + 3СН3 - СН - СН2

OH OH

(образуется диол)

Обесцвечивание алкенами водного раствора перманганата калия – качественная реакция на алкены.

5. Жесткое окисление алкенов – горячим нейтральным или кислым раствором перманганата калия. Идёт с разрывом двойной связи С=С.

1. При действии перманганата калия в кислой среде в зависимости от строения скелета алкена образуется:

Фрагмент углеродной цепи у двойной связи

Во что превращается

= СН – R

R C OOH карбоновая кислота

= C R

кетон R C R

СН3-С -1 Н =С-2 Н2 +2 KMn+7O4 + 3H2SO4 à

CH3-C +3 OOH + C+4 O2 + 2Mn+2SO4 + K2SO4 + 4H2O

2. Если реакция протекает в нейтральной среде ПРИ нагревании, то соответственно получаются калиевые соли :

Фрагмент цепи у двойной связи

Во что превращается

К2СО3

= СН – R

R C OO К - соль карбоновой кислоты

= C R

кетон R C R

3СН3С -1Н =С -2Н2 +10K MnO4 - tà 3CH 3 C +3OOK + + 3K 2C +4O3 + 10MnO2 +4Н2О+ K OH

6. Окисление кислородом этилена в присутствии солей палладия.

СН2=СН2 + O2 –(kat)à CН3СНО

(уксусный альдегид)

7. Хлорирование и бромирование в боковую цепь: если реакция с хлором проводится на свету или при высокой температуре – идёт замещение водорода в боковой цепи.

СН3-СН=СН2 + Cl2 –(свет)à СН2-СН=СН2 +HCl

8. Полимеризация:

n СН3-СН=СН2 à(-CH–CH2-)n

пропилен ô полипропилен

ПОЛУЧЕНИЕ АЛКЕНОВ

I. Крекинг алканов:

С7Н16 –(t)à CH3- CH=CH2 + C4H10

Алкен алкан

II. Дегидрогалогенирование галогеналканов при действии спиртового раствора щелочи - реакция ЭЛИМИНИРОВАНИЯ.

Правило Зайцева: Отщепление атома водорода в реакциях элиминирования происходит преимущественно от наименее гидрогенизированного атома углерода.

III . Дегидратация спиртов при повышенной температуре (выше 140°C) в присутствии в одоотнимающих реагентов - оксида алюминия или концентрированной серной кислоты – реакция элиминирования.

CH3-CH-CH2 -CH3 (H2SO4,t>140o)à

à H2O +CH3-CH=CH -CH3

(также подчиняется правилу Зайцева)

IV . Дегалогенирование дигалогеналканов , имеющих атомы галогена у соседних атомов углерода , при действии активных металлов.

CH2Br -CHBr -CH3 +Mg àCH2=CH-CH3+MgBr2

Также может использоваться цинк.

V . Дегидрирование алканов при 500°С:

VI . Неполное гидрирование диенов и алкинов

С2Н2 + Н2 (недостаток) –(kat)à С2Н4


АЛКАДИЕНЫ.


Это углеводороды, содержащие две двойные связи. Первый член ряда – С3Н4 (пропадиен или аллен). В названии появляется суффикс – ДИЕН .

Типы двойных связей в диенах:

1.Изолированные двойные связи разделены в цепи двумя или более σ-связями:

СН2=СН–СН2–СН=СН2 . Диены этого типа проявляют свойства, характерные для алкенов.

2. Кумулированные двойные связи расположены у одного атома углерода: СН2=С=СН2 (аллен)

Подобные диены (аллены) относятся к довольно редкому и неустойчивому типу соединений.

3.Сопряженные двойные связи разделены одной σ-связью: СН2=СН–СН=СН2

Сопряженные диены отличаются характерными свойствами, обусловленными электронным строением молекул, а именно, непрерывной последовательностью четырех sp2-атомов углерода.

Изомерия диенов

1. Изомерия положения двойных связей :

2. Изомерия углеродного скелета :

3. Межклассовая изомерия с алкинами и циклоалкенами . Например, формуле С4Н6 соответствуют следующие соединения:

4. Пространственная изомерия

Диены, имеющие различные заместители при углеродных атомах у двойных связей, подобно алкенам, проявляют цис-транс-изомерию .

(1)Цис-изомер (2) Транс-изомер

Электронное строение сопряженных диенов.

Молекула бутадиена-1,3 СН2=СН-СН=СН2 содержит четыре атома углерода в sp 2 - гибридизованном состоянии и имеет плоское строение.

π-Электроны двойных связей образуют единое π-электронное облако (сопряженную систему ) и делокализованы между всеми атомами углерода.

Кратность связей (число общих электронных пар) между атомами углерода имеет промежуточное значение: нет чисто одинарной и чисто двойных связей. Строение бутадиена более точно отражает формула с делокализованными «полуторными» связями.

ХИМИЧЕСКИЕ СВОЙСТВА СОПРЯЖЕННЫХ АЛКАДИЕНОВ.

РЕАКЦИИ ПРИСОЕДИНЕНИЯ К СОПРЯЖЕННЫМ ДИЕНАМ.

Присоединение галогенов, галогеноводородов, воды и других полярных реагентов происходит по электрофильному механизму (как в алкенах).

Помимо присоединения по одной из двух двойных связей (1,2-присоединение), для сопряженных диенов характерно так называемое 1,4-присоединение, когда в реакции участвует вся делокализованная системы из двух двойных связей:

Соотношение продуктов 1,2- и 1,4- присоединения зависит от условий реакции (с повышением температуры обычно увеличивается вероятность 1,4-присоединения).

1. Гидрирование.

CН3-СН2-СН=СН2 (1,2-продукт)

СН2=СН-СН=СН2 + Н2

СН3-СН=СН-СН3 (1,4-продукт)

В присутствии катализатора Ni получается продукт полного гидрирования:

CH2=CH-CH=CH2 + 2 H2 –(Ni, t)à CH3-CH2-CH2-CH3

2. Галогенирование, гидрогалогенирование и гидратация

1,4-присоединение.

1,2-присоединение.

При избытке брома присоединяется еще одна его молекула по месту оставшейся двойной связи с образованием 1,2,3,4-тетрабромбутана.

3. Реакция полимеризации.

Реакция протекает преимущественно по 1,4-механизму, при этом образуется полимер с кратными связями, называемый каучуком :

nСН2=СН-СН=СН2 à (-СН2-СН=СН-СН2-)n

полимеризация изопрена:

nCH2=C–CH=CH2 à(–CH2 –C =CH –CH2 –)n

CH3 CH3 (полиизопрен)

РЕАКЦИИ ОКИСЛЕНИЯ – мягкое, жесткое, а также горение.

Протекают так же, как и в случае алкенов – мягкое окисление приводит к многоатомному спирту, а жесткое окисление – к смеси различных продуктов, зависящих от строения диена:

СН2=СН –СН=СН2 + KMnO4 + H2O à СН2 – СН – СН – СН2 +MnO2 + KOH

Алкадиены горят – до углекислого газа и воды. С4Н6 + 5,5О2 à 4СО2 + 3Н2О

ПОЛУЧЕНИЕ АЛКАДИЕНОВ.

1. Каталитическое дегидрирование алканов (через стадию образования алкенов). Этим путем получают в промышленности дивинил из бутана, содержащегося в газах нефтепереработки и в попутных газах:

Каталитическим дегидрированием изопентана (2-метилбутана) получают изопрен:

2. Синтез Лебедева:

(катализатор – смесь оксидов Al2O3,MgO, ZnO

2 C2H5OH –(Al2O3,MgO, ZnO, 450˚C)à CH2=CH-CH=CH2 + 2H2O + H2

3. Дегидратация двухатомных спиртов:

4. Действие спиртового раствора щелочи на дигалогеналканы (дегидрогалогенирование ):

4.5.б. Окислительное расщепление алкенов

При окислении алкенов щелочным водным раствором перманганата калия при нагревании или раствором KMnO 4 в водной серной кислоте, а также при окислении алкенов раствором оксида хрома (VI) CrO 3 в уксусной кислоте или дихроматом калия и серной кислотой первоначально образующийся гликоль подвергается окислительной деструкции. Конечным результатом является расщепление углеродного скелета по месту двойной связи и образование в качестве конечных продуктов кетонов и (или) карбоновых кислот в зависимости от заместителей при двойной связи. Если оба атома углерода при двойной связи содержат только по одной алкильной группе, конечным продуктом исчерпывающего окисления будет смесь карбоновых кислот, тетразамещенный при двойной связи алкен окисляется до двух кетонов. Однозамещанные алкены с концевой двойной связью расщепляются до карбоновой кислоты и углекислого газа.

Из-за невысоких выходов карбоновых кислот и кетонов, реакции исчерпывающего окисления алкенов в классическом варианте не нашли широкого применения и ранее использовались, в основном, для установления строения исходного алкена по продуктам деструктивного окисления. В настоящее время окисление алкенов (R-CH=CH-R и R-CH=CH 2) до карбоновых кислот (RCOOH) с помощью перманганата или дихромата калия проводят в условиях межфазного катализа. Выходы карбоновых кислот при этом превышают 90%.

4.5.в. Озонолиз алкенов

Реакция алкенов с озоном является наиболее важным методом окислительного расщепления алкенов по двойной связи. В течение многих десятилетий эта реакция служила основным методом определения строения исходного углеводорода, а также находила применение в синтезе разнообразных карбонильных соединений. Реакция алкена с озоном проводится пропусканием тока ~5%-ной смеси озона и кислорода в раствор алкена в хлористом метилене или этилацетате при -80 0 -100 0 С. Окончание реакции контролируется пробой на свободный озон с иодидом калия. Механизм этой своеобразной и сложной реакции установлен главным образом благодаря работам Р Криге. Первым продуктом 1,3-диполярного циклоприсоединения к двойной связи является так называемый мольозонид (1,2,3-триоксолан). Этот аддукт нестабилен и далее самопроизвольно разлагается с раскрытием цикла и образованием в качестве конечного продукта нормального озонида (1,2,4-триоксолана).

В настоящее время общепризнано, что превращение мольозонида в обычный озонид происходит по механизму расщепления - рекомбинации. Мольозонид претерпевает самопроизвольное раскрытие нестабильного 1,2,3-триоксоланового цикла с образованием карбонильного соединения и биполярного иона, которые далее реагируют между собой также по схеме 1,3-диполярного циклоприсоединения.

Приведенная схема перегруппировки мольозонида в нормальный озонид подтверждается тем, что если до полного образования озонида в реакционной смеси присутствует в качестве "перехватчика" биполярного иона другое карбонильное соединение, то образуется так называемый "смешанный озонид". Так, например, при озонилизе цис -стильбена в присутствии бензальдегида, меченного изотопом 18 О, метка входит в состав эфирного, а не перекисного мостика озонида:

Этот результат хорошо согласуется с образованием смешанного озонида при рекомбинации биполярного иона с меченным бензальдегидом:

Озониды представляют собой очень нестабильные соединения, разлагающиеся со взрывом. Их не выделяют в индивидуальном виде, а расщепляют при действии самых разнообразных регентов. Следует различать восстановительное и окислительное расщепление. При гидролизе озониды медленно расщепляются на карбонильные соединения и перекись водорода. Перекись водорода окисляет альдегиды до карбоновых кислот. Это так называемое окислительное разложение озонидов:

Таким образом, при окислительном разложении озонидов образуются карбоновые кислоты и (или) кетоны в зависимости от строения исходного алкена. В качестве окислителей можно использовать кислород воздуха, перекись водорода, перкислоты или гидроокись серебра. Наиболее часто в синтетической практике для этой цели используют перекись водорода в уксусной или муравьиной кислоте, а также перекись водорода в щелочной среде.

На практике метод окислительного разложения озонидов используется, в основном, для получения карбоновых кислот.

Более важное значение имеет восстановительное расщепление озонидов. В качестве восстановителей наиболее часто используются цинк и уксусная кислота, трифенилфосфин или диметилсульфид. В этом случае конечными продуктами озонолиза оказываются альдегиды или кетоны в зависимости от строения исходного алкена.

Из приведенных выше примеров видно, что тетразамещенный при двойной связи алкен при озонолизе и последующем восстановительном разложении озонида образует два кетона, тогда как тризамещенный алкен дает кетон и альдегид. Дизамещенный симметричный алкен при озонолизе образует два альдегида, а алкены с концевой связью - альдегид и формальдегид.

Интересной модификацией озонолиза является метод, где в качестве восстановителя озонида используется боргидрид натрия, В этом случае конечными продуктами реакции оказываются первичные или вторичные спирты, образующиеся при восстановлении соответственно альдегидов и кстонов.

Озонолиз алкенов - это сложный, трудоемкий и взрывоопасный процесс, требующий применения специальной аппаратуры. По этой причине были разработаны другие методы окислительного расщепления алкенов до карбонильных соединений и карбоновых кислот, которые с успехом заменяют реакцию озонолиза в синтетической практике.

Один из современных препаративных методов окислительной деструкции алкенов был предложен в 1955 г Р. Лемье. В основе этого метода лежит гидроксилирование алкенов с помощью перманганата калия с последующим расщеплением вицинального гликоля периодатом натрия NaIO 4 при рН ~ 7 8. Периодат сам по себе не взаимодействует с алкеном. Продуктами этого двухстадийного окислительного расщепления являются кетоны или карбоновые кислоты, поскольку альдегиды в этих условиях также окисляются до карбоновых кислот. В методе Лемье не возникает трудоемкой проблемы отделения одного из продуктов реакции, - двуокиси марганца, так как и двуокись, и манганат вновь окисляются периодатом до перманганат-иона. Это позволяет использовать только каталитические количества перманганата калия. Ниже приведены некоторые типичные примеры окислительного расщепления алкенов по методу Лемье.

Цитронеллол - спирт, входящий в состав розового масла, масла герани и лимона, - окисляется смесью перманганата калия и периодата натрия в водном ацетоне при 5 10 0 С до 6-гидрокси-4-метилгексанкарбоновой кислоты с количественным выходом.

В другой разновидности этого метода вместо перманганата калия используют каталитические количества тетраоксида осмия (Лемье, Джонсон 1956 г). Особое достоинство комбинации OsO 4 и NaIO 4 заключается в том, что она позволяет остановить окисление на стадии альдегида. Тетраоксид осмия присоединяется к двойной связи алкена с образованием осмата, который окисляется периодатом натрия до карбонильных соединений с регенерацией четырехокиси осмия.

Вместо тетраоксида осмия можно использовать и тетраоксид рутения RuO 4 . Окислительная деструкция алкенов по Лемье-Джонсону приводит к тем же продуктам, что и озонолиз с восстановительным расщеплением озонидов.

В терминах, характерных для современной органической химии, это означает, что комбинация OsO 4 -NaIO 4 представляет собой синтетический эквивалент реакции озонолиза алкенов с последующим восстановительным расщеплением. Аналогично, окисление алкенов смесью перманганата и периодата - это синтетический эквивалент озонолиза с окислительным разложением озонидов.

Таким образом, окисление алкенов - это не только совокупность препаративных методов получения спиртов, эпоксидов, диолов, альдегидов, кетонов и карбоновых кислот, это также один из возможных путей установления структуры исходного алкена. Так, по результату, окислительной деструкции алкена можно определить положение двойной связи в молекуле, тогда как стереохимический результат син- или анти- гидроксилирования алкена позволяет сделать вывод о его геометрии.

Окисление алкенов перманганатом калия в щелочной среде при нагревании (жесткие условия) приводит к разрушению их углеродного скелета по месту двойной связи. При этом в зависимости от числа алкильных групп, связанных с винильным фрагментом, могут быть получены две карбоновые кислоты, кислота и кетон или два кетона:

Упр.11. Какой продукт образуются при окислении циклогексена (а) разбавленным раствором перманганата калия на холоде и (б) концентрированным раствором перманганата калия с последующим подкислением.

Упр.12. Какие продукты образуются из 1,2-диметилциклогексена при его (а) каталитическом гидрировании, (б) окислении разбавленным раствором перманганата калия на холоде, (в) озонировании с последующим восстановительным расщеплением.

6.5. Окисление этилена в ацетальдегид

Окисление этилена кислородом воздуха в присутствии хлоридов палладия (II) и меди (II) приводит к образованию ацетальдегида (Вакер-процесс) :

(63)

этаналь (ацетальдегид)

6.6. Хлорокисление этилена

Винилхлорид получают хлорокислением этилена:

6.7. Окислительный аммонолиз

Окисление углеводородов кислородом воздуха в присутствии аммиака приводит к превращению метильной группы в цианогруппу. Такое окисление называется окислительным аммонолизом. Окислительным аммонолизом пропилена получают акрилонитрил.

акрилонитрил

Окислительным аммонолизом метана получают синильную кислоту:

(66)

7. Гидроформилирование алкенов (Оксосинтез)

При температуре от 30 до 250 о С и давлении 100-400 атм. в присутствии дикобальтоктакарбонила алкены присоединяют водород и монооксид углерода с образованием альдегидов. Обычно получается смесь изомеров:

Механизм:

1. Отщепление лиганда

2. Присоединение этилена

3. Внедрение этилена

4. Присоединение лиганда

5. Внедрение СО

6. Окислительное присоединение водорода

7. Восстановительное отщепление пропаналя

8. Присоединение карбенов и карбеноидов

Последние годы большое внимание в органической химии уделяется соединениям двухвалентного углерода – карбенам. Большинство из карбенов неустойчивы и сразу же после их образования реагируют с другими соединениями.

8.1. Строение карбенов

Незамещенный карбен:СН 2 , называемый также метиленом, может находиться в синглетной или триплетной форме. В синглетной форме карбена два несвязывающих электрона со спаренными спинами находятся на одной орбитали, в то время как в триплетной форме два неспаренных электрона с параллельными спинами находятся на двух орбиталях одинаковой энергии. Различные электронные конфигурации синглетных и триплетных карбенов находят отражение как в различной геометрии этих частиц, так и в различной химической активности. Двухвалентный атом углерода синглетного карбена находится в sp 2 -гибридном состоянии, оба электрона расположены на sp 2 -гибpиднoй орбитали (ВЗМО), а р-орбиталь (НСМО) - свободна. Триплетный карбен характеризуется sp-гибридизацией двухвалентного углерода; при этом два неспаренных электрона располагаются на двух р-орбиталях, т. е. триплетный карбен является бирадикалом. Угол Н-С-Н для синглетного метилена, согласно спектральным данным, равен 102-105 0 , а для триплетного метилена этот угол увеличивается до 135140 o . Это соответствует более высокой стабильности триплетного метилена. Согласно данным квантовомеханических расчетов триплетный метилен действительно на 10 ккал/моль стабильнее синглетного метилена.

Заместители, однако, вызывают изменение относительной стабильности этих двух форм карбенов. Для диалкилкарбенов триплетная форма также стабильнее синглетной, но для дигалокарбенов : CHal 2 , и других карбенов с заместителями, содержащими неподеленную пару электронов, основным состоянием является синглетное. Валентный угол С1-С-С1 для дихлоркарбена, равный 106 o , хорошо согласуется с синглетной формой. Более высокая стабильность синглетной формы дигалокарбенов по сравнению с триплетной, по-видимому, обусловлена ее стабилизацией за счет неподеленной пары электронов гетероатома

Такая стабилизация триплетной формы дигалокарбенов невозможна. Согласно данным квантовомеханического расчета, энергия синглет - триплетного перехода для дихлоркарбена составляет 13,5 Ккал/моль.

А. Дихлоркарбен

Для генерирования дигалокарбенов разработаны методы, основанные на реакции -элиминирования галогеноводорода из тригалогенометанов под действием сильных оснований. Этот метод исторически был первым, с помощью которого в качестве интермедиата был генерирован первый из карбенов - дихлоркарбен (Дж. Хайн 1950 г.). При взаимодействии с сильными основаниями из хлороформа (рКа хлороформа составляет ~16), бромоформа (рКа = 9) и других тригалогенометанов образуется анион который стабилизируется за счет отщепления галогенид-иона с образованием дигалокарбена. Действием на хлороформ сильных оснований получают дихлоркарбен:

дихлоркарбен

В качестве основания можно использовать также литийорганические соединения в индифферентной апротонной среде. Тогда ниже -100 0 С можно зафиксировать образование трихлорметиллития в качестве интермедиата.

С помощью таких сильных оснований, как RLi, можно генерировать карбены из 1,1-дигалогенпроизводных

В последние годы для генерирования дигалокарбенов вместо н -бутиллития широко используют в качестве основания бис(триметилсилил)амид натрия.

При этом выделяется химически инертный силазан [бис(триметилсилил)амид]. Бис(триметилсилил)амид натрия, в отличие от н-бутиллития, можно выделять в инертной атмосфере в сухом виде. На практике чаще используют его эфирные растворы, которые можно хранить при комнатной температуре в течение длительного времени.

Дихлоркарбен может быть также генерирован при термическом декарбоксилировании сухого трихлорацетата натрия:

Один из самых доступных современных методов генерирования дихлоркарбена из хлороформа под действием гидроксида натрия в условиях межфазного катализа будет подробно рассмотрен позднее.

Дихлоркарбен присоединяется к алкенам, давая дихлорциклопропаны. Присоедине-ние происходит стереоспецифично - конфигурация исходного алкена сохраняется и в продукте реакции - циклопропане:

(69)

транс -2-бутентранс -1,2-диметил-3,3-

дихлорциклопропан

(70)

цис -2-бутенци с -1,2-диметил-3,3-

дихлорциклопропан

(71)

7,7-дихлорбициклогептан

При восстановлении 1,1-дигалогенциклопропанов под действием лития в mpem -бутиловом спирте, цинка в уксусной кислоте или натрия в жидком аммиаке оба атома галогена замещаются на водород. Это один из общих методов получения производных циклопропана.

бициклогептан

Упр. 11. Завершите реакции:


(Z)-3-метил-2-пентен метиленциклогексан

Ответ

Б. Метилен

Метилен может быть получен разложением диазометана. Диазометан представляет собой относительно неустойчивое вещество, разлагающееся при облучении на азот и метилен.

(73)

диазометан

Метилен:СН 2 при фотолизе диазометана образуется в менее стабильной синглетной форме. Синглетный метилен в условиях реакции в результате столкновений с молекулами диазометана или азота быстро теряет энергию и превращается в более стабильный триплетный метилен.

Для синглетного карбена характерно синхронное присоединение к двойной связи алкена с полным сохранением геометрии при двойной связи (реакция -циклоприсоединения). Присоединение синглетной формы карбена по двойной связи происходит, таким образом, строго стереоспецифично.

В. Реакция Симмонса- Смита

Эффективный и экспериментально очень простой способ превращения алкенов в производные циклопропана основан на реакции алкенов с иодистым метиленом и сплавом цинка и меди. Эта реакция была открыта в 1958 г. Симмонсом и Смитом и сразу же завоевала широкую популярность в синтезе производных циклопропана. Активной частицей в этой реакции является не карбен : СН 2 , а карбеноид - иодид иодметилцинка IZnCH 2 I, образующийся при взаимодействии иодистого метилена и цинк-медной пары.

дииодметан иодометилцинкиодид

(реактив Симмонса-Смита)

(75)

Реакция проходит по следующему механизму:

Реакция Симмонса-Смита представляет собой очень удобный метод превращения алкенов в циклопропаны.

Упр. 12. Завершите реакции:


Ответ

(76)

метиленциклопентан спирогептан

(77)

стирол циклопропилбензол

Алкины с неконцевой тройной связью служат потенциальным источником для синтеза 1,2-дикетонов при действии подходящего окислителя. Однако до сих пор не найдено универсального реагента, вызывающего окисление тройной углерод–углеродной связи до 1,2-дикарбонильной группы. Предлагавшийся для этой цели RuO 4 – оксид рутения (VIII) – слишком дорог и часто вызывает дальнейшую окислительную деструкцию 1,2-дикетонов до карбоновых кислот. При взаимодействии дизамещенных ацетиленов с такими сильными окислителями, как перманганат калия, только в совершенно нейтральной среде при рН 7–8 при 0 С окисление удается остановить на стадии образования -дикетона. Так, например, стеароловая кислота при рН 7,5 окисляется до -дикетона. В большинстве случаев окисление сопровождается расщеплением тройной связи с образованием карбоновых кислот:

Выход продуктов окислительной деструкции алкинов невелик, и эта реакция не играет заметной роли в органическом синтезе. Она используется исключительно для доказательства строения природной ацетиленовой кислоты, содержащейся в листьях тропических растений в Центральной Америке. При ее окислительной деструкции были выделены две кислоты – лауриновая и адипиновая. Это означает, что исходная кислота представляет собой 6-октадециновую кислоту с нормальным углеродным скелетом из семнадцати атомов углерода:

Гораздо более важное значение имеет окислительное сочетание алкинов-1, катализируемое солями меди (реакция Глазера–Эглинтона). В 1870 г. Глазер обнаружил, что суспензия ацетиленида меди (I), в спирте окисляется кислородом воздуха с образованием 1,3-диинов:

Для окисления ацетиленидов меди (I) в качестве окислителя более эффективен гексацианоферрат (III) калия K 3 в ДМЭ или ДМФА. В 1959 г. Эглинтон предложил значительно более удобную модификацию окислительной конденсации алкинов. Алкин окисляют ацетатом меди (II) в растворе пиридина при 60–70 С. Модификация Эглинтона оказалась чрезвычайно полезной для синтеза макроцикличеких полиинов из ,-диинов. В качестве иллюстрации приведем синтез двух циклополиинов при окислительной конденсации гексадиина-1,5 (Ф. Зондхеймер, 1960):

Один из полиинов представляет собой продукт циклотримеризации, другой – циклотетрамеризации исходного гесадиина-1,5. Тример служит исходным реагентом для синтеза ароматического -аннулена (подробнее об аннуленах см. в гл. 12). Аналогично в тех же условиях нонадиина-1,8 получается его димер – 1,3,10,12-циклооктадекатетраен наряду с тримером, тетрамером и пентамером:

Для получения несимметричных диинов используют конденсацию галогенацетиленов с алкином-1 (терминальным алкином) в присутствии солей меди (I) и первичного амина (сочетание по Кадио–Ходкевичу, 1957 г.):

Исходные бромалкины получаются при действии на алкины-1 гипобромита натрия или из ацетиленидов лития и брома:

Медьорганическое производное теминального алкина генерируют непосредственно в реакционной смеси из Cu 2 Cl 2 и алкина-1.

6.3.4. Реакции электрофильного присоединения к тройной связи

Реакции электрофильного присоединения к тройной связи относятся к числу наиболее типичных и важных реакций алкинов. В отличие от электрофильного присоединения к алкенам синтетическое применение этой большой группы реакций намного опережало развитие теоретических представлений о ее механизме. Однако за последние двадцать лет положение существенно изменилось и в настоящее время это одна из бурно развивающихся областей физической органической химии. ВЗМО алкина располагается ниже, чес ВЗМО алкена (гл. 2), и это обстоятельство предопределяет в подавляющем большинстве случаев более низкую скорость присоединения электрофильного агента к алкину по сравнению с алкеном. Другим фактором, определяющим различие в реакционной способности алкинов и алкенов в реакциях электрофильного присоединения, является относительная стабильность интермедиатов, возникающих при присоединении электрофильной частицы к тройной и двойной связям. При присоединении электрофильной частицы Н + или Е + к двойной связи образуется циклический или открытый карбокатион (гл. 5). Присоединение Н + или Е + к тройной связи приводит к образованию открытого или циклического винил-катиона. В линейном открытом винил-катионе центральный атом углерода находится в sp -гибридном состоянии, в то время как вакантная р -орбиталь ортогональна -связи. Поскольку sp -гибридный атом углерода винил-катиона обладает более высокой электроотрицательностью по сравнению с sp 2 -гибридным атомом алкил-катиона, винил-катион должен быть менее стабилен по сравнению с алкил-катионом:

Данные квантовомеханических расчетов, а также термодинамические данные для газовой фазы, полученные с помощью масс-спектрометрии высокого давления и спектроскопии циклотронного резонанса, находятся в полном соответствии с этими рассуждениями. В табл. 6.3 приведены термодинамические данные для образования ряда карбокатионов и углеводородов, относящиеся к газовой фазе при 25 С.

Карбокатион

ΔН f ˚ ккал/моль

Из данных, представленных в тал. 6.3, следует, что винил-катион на 47 ккал/моль менее стабилен, чем содержащий то же число атомов этил-катион. Тот же вывод можно сделать и из энтальпии ионизации в газовой фазе CH 3 CH 2 Cl и CH 2 =CHCl:

Нетрудно заметить, что сочетание обоих факторов - более высокой энергии винил-катиона и низко расположенной ВЗМО алкина - представляет более низкую реакционную способность алкинов по сравнению с алкенами в реакциях электрофильного присоединения. В табл. 6.4 собраны сравнительные данные по присоединению галогенов, сульфен- и селенилхлоридов, трифторуксусной кислоты и воды к различным алкенам и алкинам, не содержащим какой-либо активирующей или дезактивирующей функциональной группы.

Таблица 6.4

Сравнительная характеристика алкинов и алкенов

в реакциях электрофильного присоединения

Субстраты

К алкен /К алкин

Бромирование в уксусной кислоте

СН 2 CH 2 /НССН

С 4 Н 9 СН=СН 2 /С 4 Н 9 ССН

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

Хлорирование в уксусной кислоте

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

С 4 Н 9 СН=СН 2 /С 6 Н 5 ССН

С 2 Н 5 С=СНС 2 Н 5 /С 2 Н 5 ССС 2 Н 5

Присоединение 4-хлорфенилсульфенхлорида

п -ClС 6 H 4 SeCl

СН 2 =СН 2 /НССН

С 4 Н 9 СН=СН 2 /С 4 Н 9 ССН

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

Присоединение фенилселенхлорида С 6 Н 5 SeCl

СН 2 =СН 2 /НССН

С 4 Н 9 СН=СН 2 /С 4 Н 9 ССН

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

Присоединение трифторуксусной кислоты

С 4 Н 9 СН=СН 2 /С 4 Н 9 ССН

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

С 2 Н 5 СН=СН 2 /С 2 Н 5 ССН

Кислотно-катализируемая гидратация

С 4 Н 9 СН=СН 2 /С 4 Н 9 ССН

С 2 Н 5 СН=СНС 2 Н 5 /С 2 Н 5 ССС 2 Н 5

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

Из этих данных следует, что только присоединение кислотных агентов и воды к тройной и двойной связям происходит с близкими скоростями. Присоединение галогенов, сульфенхлоридов и ряда других реагентов к алкенам протекает в 10 2  10 5 раз быстрее, чем к алкинам. Это означает, что углеводороды, содержащие несопряженные тройную и двойную связи, избирательно присоединяют эти реагенты по двойной связи, например:

К данным по сравнительной гидратации алкинов и алкенов следует относиться с осторожностью, поскольку для гидратации алкинов требуется катализ ионами ртути (II), который неэффективен для присоединения воды к двойной связи. Поэтому данные по гидратации тройной и двойной связи, строго говоря, не сопоставимы.

Присоединение галогенов, галогеноводородов, сульфенхлоридов и других электрофильных агентов можно осуществлять ступенчато, что легко проиллюстрировать с помощью следующих примеров:

Выбрать в молекуле главную углеродную цепь. Во-первых, она должна быть самой длинной. Во-вторых, если имеются две или более одинаковые по длине цепи, то из них выбирается наиболее разветвленная. Например, в молекуле есть 2 цепи с одинаковым числом (7) атомов С (выделены цветом):

В случае (а) цепь имеет 1 заместитель, а в (б) – 2. Поэтому следует выбрать вариант (б).

1.Пронумеровать атомы углерода в главной цепи так, чтобы атомы С, связанные с заместителями, получили возможно меньшие номера. Поэтому нумерацию начинают с ближайшего к ответвлению конца цепи. Например:

    Назвать все радикалы (заместители), указав впереди цифры, обозначающие их местоположение в главной цепи. Если есть несколько одинаковых заместителей, то для каждого из них через запятую записывается цифра (местоположение), а их количество указывается приставками ди -, три -, тетра -, пента - и т.д. (например, 2,2-диметил или2,3,3,5-тетраметил ).

    Названия всех заместителей расположить в алфавитном порядке (так установлено последними правилами ИЮПАК).

    Назвать главную цепь углеродных атомов, т.е. соответствующий нормальный алкан.

Таким образом, в названии разветвленного алкана корень+суффикс – название нормального алкана (греч. числительное+суффикс "ан"), приставки – цифры и названия углеводородных радикалов. Пример построения названия:

Хим. Св-ва алканов Крекинг алканов. Крекинг – процесс термического разложения углеводородов, в основе которого лежат реакции расщепления углеродной цепи крупных молекул с образованием соединений с более короткой цепью. Изомеризация алканов Алканы нормального строения под влиянием катализаторов и при нагревании способны превращаться в разветвленные алканы без изменения состава молекул, т.е. вступать в реакции изомеpизации. В этих pеакциях участвуют алканы, молекулы которых содержат не менее 4-х углеродных атомов.Например, изомеризация н-пентана в изопентан (2-метилбутан) происходит при 100С в присутствии катализатора хлорида алюминия:

Исходное вещество и продукт реакции изомеризации имеют одинаковые молекулярные формулы и являются структурными изомерами (изомерия углеродного скелета).

Дегидрирование алканов

При нагревании алканов в присутствии катализаторов (Pt, Pd, Ni, Fe, Cr 2 O 3 , Fe 2 O 3 , ZnO) происходит их каталитическое дегидрирование – отщепления атомов водорода за счет разрыва связей С-Н.

Строение продуктов дегидрирования зависит от условий реакции и длины основной цепи в молекуле исходного алкана.

1.Низшие алканы, содержащие в цепи от 2-х до 4-х атомов углерода, при нагревании над Ni-катализатором отщепляют водород от соседних углеродных атомов и превращаются в алкены :

Наряду с бутеном-2 в этой реакции образуется бутен-1 CH 2 =CH-CH 2 -CH 3 . В присутствии катализатора Cr 2 O 3 /Al 2 O 3 при 450-650 С из н -бутана получают также бутадиен-1,3 CH 2 =CH-CH=CH 2 .

2. Алканы, содержащие в основной цепи больше 4-х атомов углерода, используются для получения циклических соединений. При этом происходит дегидроциклизация – реакция дегидрирования, которая приводит к замыканию цепи в устойчивый цикл.

Если основная цепь молекулы алкана содержит 5 (но не более) атомов углерода (н -пентан и его алкильные производные), то при нагревании над Pt-катализатором атомы водорода отщепляются от концевых атомов углеродной цепи, и образуется пятичленный цикл (циклопентан или его производные):

    Алканы с основной цепью в 6 и более атомов углерода также вступают в реакцию дегидроциклизации, но всегда образуют 6-членный цикл (циклогексан и его производные). В условиях реакции этот цикл подвергается дальнейшему дегидрированию и превращается в энергетически более устойчивый бензольный цикл ароматического углеводорода (арена). Например:

Эти реакции лежат в основе процесса риформинга – переработки нефтепродуктов с целью получения аренов (ароматизация предельных углеводородов) и водорода. Превращение н- алканов в арены ведет к улучшению детонационной стойкости бензина.



erkas.ru - Обустройство лодки. Резиновые и пластиковые. Моторы для лодок