Системы автоматизации холодильных машин. Защита холодильных машин и установок Щит управления холодильным агрегатом и устройствами автоматизации холодильной установки

Назначение

Установки пропанового охлаждения природного газа предназначены для одновременного обеспечения требуемых параметров точки росы по воде и углеводородам посредством конденсации водной и углеводородной фракции (УВ) при низких температурах (до минус 30 0 С). Источником холода является внешний пропановый холодильный цикл.

Основное преимущество таких установок – низкие потери давления сырьевого потока (дросселирование потока природного газа не требуется) и возможность извлечения продукционной фракции С3+.

Для предотвращения гидратообразования используется впрыск ингибитора: этиленгликоля (для температур не ниже минус 35 0 С) и метанола (для температур вплоть до минус 60 0 С).

Основные преимущества

Надежность

  • Непрерывный процесс, основанный на конденсации воды и УВ фракций в присутствии ингибитора гидратообразования.
  • Отсутствие циклических колебаний.
  • Кожухотрубный теплообменник газ-газ с низким температурным напором.
  • Сервис-фактор мотора холодильного компрессора 110%.
  • Автоматическая система поддержания давления в ресивере при эксплуатации в холодном климате.
  • Электрообогрев сборника ингибитора в трехфазном сепараторе.

Эффективность

  • Холодный сепаратор с эффективными коалесцирующими насадками и значительным временем пребывания.
  • Теплообменник газ-пропан (чиллер) с погруженным трубным пучком.

Возможные опции

  • Экономайзер холодильного цикла (стандарт для систем свыше 150 кВт и температурой испарения ниже минус 10 0 С).
  • Входной сепаратор.
  • Теплообменник газ-жидкость (позволяет снизить потребляемую мощность компрессора).

Технологическая схема

Влагонасыщенный поток природного газа подается во входной сепаратор (1), в котором из потока удаляются свободная вода и УВ фракции. Газовая фракция направляется в теплообменник газ-газ (2) для предварительного охлаждения потоком сухого отбензиненного газа из холодного сепаратора. Для предотвращения гидратообразования в теплообменнике предусмотрены форсуночные устройства для впрыска ингибитора (метанол или этиленгликоль).

Рис. 3 Принципиальная схема пропановой холодильной установки

После предварительного охлаждения в теплообменнике газ-газ поток подается в теплообменник газ-пропан (чиллер) (4), в котором происходит понижение температуры потока до заданного значения посредством теплообмена с потоком кипящего пропана. Сырьевой поток находится в трубном пучке, который в свою очередь погружен в объем хладагента.

Образовавшаяся в результате охлаждения парожидкостная смесь поступает на разделение в низкотемпературный трехфазный сепаратор (5), где разделяется на потоки отбензиненного газа, конденсата и насыщенного водой ингибитора гидратообразования.

Сухой отбензиненный газ (СОГ) подается противотоком в теплообменник газ-газ (2) и далее отводится за пределы установки.

Жидкостные фракции отводятся независимыми автоматическими конроллерами уровня в соответствующие линии.

Статьи по теме

Газопереработка - это просто

Одной из наших основных задач является борьба с мифом о том, что газопереработка это сложно, долго и дорого. Удивительно, но на проекты, которые в США реализуются за 10 месяцев, на территории СНГ уходит до трех лет. Установки, занимающие в США 5000 м2, на территории СНГ с трудом умещаются на 20 000 м2. Проекты, окупающиеся в США за 3-5 лет, даже при существенно более низкой стоимости реализации продукта, на территории России и Казахстана не окупаются никогда.

Для обеспечения неавтономных кондиционеров холодом применяют холодильные станции различной холодопроизводи-тельности. Холодильные станции обычно комплектуются двумя или более холодильными установками, работающими с промежуточным холодоносителем, как правило водой.

Рассмотрим автоматизацию отдельных элементов холодильных установок и холодильной станции в целом. Защита компрессора от повышенного давления на нагнетании и пониженного на всасывании осуществляется с помощью реле давления (рис. 8.10, а). Работу системы контролирует реле контроля смазки. Компрессоры большой холодопроизводительности охлаждаются водой. Для защиты их от перегрева в случае прекращения подачи охлаждающей воды устанавливают реле расхода. При отклонении какого-либо из параметров срабатывает соответствующее реле защиты и компрессор останавливается. При остановке электродвигателя компрессора закрывается сблокированный с ним соленоидный вентиль трубопровода охлаждающей воды.

Защита испарителя холодильной установки (рис. 8.10, б) предусматривается во избежание замерзания воды в трубах испарителя. На трубопроводе выходящей из испарителя воды установлен датчик позиционного терморегулятора, настроенного на 1-3 °С. При температуре воды ниже установленной размыкаются контакты регулятора и останавливается электродвигатель компрессора. Если внезапно прекратился приток воды через испаритель, регулятор вследствие инертности системы может не сработать даже при замораживании испарителя. Во избежание этого устанавливают

Рис. 8.10.

  • 1 - реле контроля смазки; 2, 3 - реле низкого и высокого давления;
  • 4 - регулятор расхода; 5 - соленоидный вентиль; 6 - реле расхода;
  • 7 - терморегулятор

реле расхода, которое при уменьшении протока воды до критического значения срабатывает и останавливает электродвигатель компрессора.

Схема автоматизации холодильной станции приведена на рис. 8.11. Для упрощения на схеме показана одна холодильная машина. Из бака 1 насосы подают воду на испарители холодильных машин, охлажденная вода сливается в бак 2 и насосами подается к кондиционерам, а затем снова сливается в бак 1. На охлаждение конденсаторов вода подается из градирни.

Защита компрессора осуществляется с помощью реле 3 , 4 , 5, а испарителя - реле б и 7. Если какой-либо параметр отклонится от заданной величины, сработает соответствующее реле, остановится компрессор, а через небольшой промежуток времени остановятся и насосы оборотного водоснабжения. На щите автоматики включится сигнальная лампа того узла, в котором произошла авария, и начнет подаваться звуковой сигнал 9.


Рис. 8.11.

холодильной станции

Температура воды в баке 2 регулируется терморегулятором 10, настроенным на максимальную и минимальную температуру (например, 8 и 6 °С). При температуре воды 8 °С последовательно через определенный промежуток времени с помощью командного прибора 11 включаются холодильные установки, причем компрессор холодильной установки включается только в том случае, если работают насосы, подающие воду в испаритель и конденсатор, и если все параметры, контролируемые приборами зашиты, находятся в пределах нормы. При снижении температуры холодной воды до 6 °С холодильные установки отключаются в той же последовательности. Для поддержания постоянного давления воды, подаваемой к кондиционерам, установлен регулятор давления прямого действия 8. В целях экономии водопроводной воды для охлаждения конденсаторов холодильных машин применяются системы оборотного водоснабжения, в которых нагретая вода охлаждается в градирнях. Схема автоматизации таких систем охлаждения рассмотрена в разд. 7.5 (см. рис. 7.14).

Автоматизация производственных процессов является важнейшим условием технического прогресса любой отрасли промышленности.

Цель автоматизации холодильных установок - замена ручного труда, точное поддержание заданных параметров, предотвращение аварий, увеличение срока службы оборудования, сокращение затрат, повышение культуры производства.

Эксплуатация автоматизированных холодильных установок обходится дешевле, так как отпадает необходимость в части обслуживающего персонала, занятого ручными операциями по пуску, регулированию и остановке холодильного оборудования, визуальному наблюдению за работой машин и аппаратов.

Устройства автоматизации могут выполнять как отдельные операции: контроль, сигнализация, включение и выключение исполнительных механизмов, так и совокупность этих операций: автоматическая защита и регулирование.

Любая операция, осуществляемая машинистом современных холодильных установок, поддается автоматизации. Однако не все операции целесообразно автоматизировать.

Автоматизация процессов регулирования и защиты необходима в тех случаях, когда эти процессы требуют затрат ручного труда и когда машинист не может обеспечить точное регулирование и надежную защиту. Очень важно также автоматизировать работы во вредных и взрывоопасных помещениях.

Абсорбционные и пароэжекторные холодильные машины ввиду отсутствия движущихся механизмов (кроме насосов) легче поддаются полной автоматизации, чем крупные компрессионные, которые требуют непрерывного наблюдения и квалифицированного обслуживания.

Крупные и средние холодильные установки снабжают частичной автоматизацией, при которой автоматически регулируется лишь часть процессов. Чаще такие холодильные установки работают на полуавтоматическом режиме, при котором остановка машины происходит автоматически, а пуск вручную.

Основными частями любой автоматической системы являются: измерительный (чувствительный) элемент, или датчик, воспринимающий изменение регулируемой величины; регулирующий орган, изменяющий по сигналу измерительного элемента подачу вещества или энергии в регулируемый объект, и передаточное устройство, соединяющее датчик с исполнительным механизмом. Измерительный элемент снабжен обычно приспособлением для настройки на заданное значение регулируемой величины.

Приборы автоматического управления должны включать или выключать компрессоры и насосы при изменениях нагрузки. Компрессорами управляют с помощью реле температуры, останавливающих компрессоры при понижении температуры рассола или давления в испарителях ниже заданного предела и включающих их при повышении температуры в испарителе. Иногда холодильные машины включают с помощью реле времени, которому задают время включения компрессора.

Приборы автоматического регулирования предназначены для поддержания заданных параметров работы холодильной установки: температуры, давления, уровня. Благодаря плавному регулированию холодопроизводительности можно поддерживать заданную температуру хладоносителя при понижении тепловой нагрузки. Достигается оно следующими путями:
установкой регуляторов давления «до себя», поддерживающих постоянное давление в испарителях и дросселирующих пары перед компрессором;
установкой регуляторов давления «после себя», перепускающих часть паров из нагнетательной линии во всасывающую. За счет этого часть паров, которая могла бы поступить в компрессор из испарителя, отсекается и холодопроизводительность установки падает;
подключением дополнительного вредного пространства в поршневом компрессоре, уменьшающего отсос паров хладагента из испарителя.

Регулирование подачи хладагента в испаритель преследует две цели: обеспечение безопасной работы компрессора, путем защиты его от гидравлического удара и уменьшение или увеличение холодопроизводительности установки.

Автоматическая сигнализация оповещает о изменениях режима, которые могут повлечь за собой срабатывание элементов автоматической защиты, и извещает о включении и выключении машин, магнитных вентилей, задвижек и приборов. Примером сигнального прибора служит дистанционный указатель уровня ДУ, соединяемый с исполнительными механизмами - соленоидными вентилями или звуковыми сигнальными устройствами - ревунами.

Автоматическая защита позволяет избегать опасных для холодильной машины последствий чрезмерного повышения давления нагнетания, понижения давления и температуры испарения, нарушений режима работы смазочных устройств и т. д.

Для защиты установок от аварийного режима в схемах автоматизации предусматривают приборы, отключающие холодильные агрегаты при резких нарушениях режима работы.

Вынос вторичных показаний приборов контроля и измерения (термометров, манометров, расходомеров, указателей уровня) на центральный щит, где расположена и регулирующая станция, позволяет управлять работой холодильной установки централизованно. Часть измерений записывают самопишущие приборы (термометры, манометры).

Комплексная автоматизация холодильной установки состоит в оснащении ее устройствами автоматического управления, регулирования и защиты, а также средствами контроля и сигнализации, обеспечивающими исправную работу этих устройств.

Контрольные вопросы
1. Что дает автоматизация холодильных установок?

2. Назовите основные элементы автоматизации.

3. Из каких элементов состоит система автоматического регулирования?

4. Расскажите об устройстве ТРВ,
170
5. Объясните конструкцию и принцип работы соленоидного вентиля.

6. Как работают мембранные пневматические клапаны?

7. Назовите способы регулирования холодопроизводительности.

8. Расскажите о работе реле давления.

9. Расскажите об устройстве РУКЦ.

10. Что вы знаете о водорегулирующем вентиле?

11. Перечислите способы защиты компрессора от опасности гидравлического удара.

12. Объясните устройство и принцип работы дистанционного указателя уровня.

13. Какие виды автоматической сигнализации вы знаете?

14. Проследите работу приборов автоматизации в схеме двухступенчатой холодильной установки.

15. Расскажите об особенностях автоматизации холодильных турбоагрегатов.

16. Расскажите о схемах автоматизации отдельных узлов аммиачных холодильных установок.

ОТ ОПАСНЫХ РЕЖИМОВ

В процессе работы холодильных машин и установок из-за отказов отдельных узлов или агрегатов, а также из-за нарушений в системах энерго- и водоснабжения могут возникать опасные режимы: повышение давления и температуры, уровня жидкости в отдельных аппаратах или узлах машин, прекращение смазки трущихся пар, отсутствие охлаждающей воды и т.д. Если не будут приняты своевременные меры, могут быть повреждены или разрушены компрессоры, теплообменные аппараты или другие элементы установки. При этом возникает серьезная опасность для здоровья и жизни обслуживающего персонала.

Защита холодильных машин и установок включает в себя целый комплекс технических и организационных мероприятий, обеспечивающих их безопасную эксплуатацию. В этой главе будут рассмотрены лишь те из них, которые выполняются на основе автоматических приборов и устройств.

СПОСОБЫ ЗАЩИТЫ

К способам защиты относят остановку машины или всей установки, включение аварийных устройств, выпуск рабочего вещества в атмосферу или перепуск в другие аппараты.

Остановка машины или всей установки. Этот способ осуществляется с помощью системы автоматической защиты (САЗ), которая состоит из первичных устройств - датчиков-реле защиты (или просто реле защиты) и электрической схемы, преобразующей сигналы от реле защиты в сигнал остановки. Этот сигнал передается в схему автоматического управления.

Реле защиты воспринимают контролируемые технологические величины и при достижении ими предельно допустимых значений вырабатывают аварийный сигнал. Эти приборы обладают чаще всего релейными двухпозиционными характеристиками. Число входящих в САЗ датчиков-реле определяется минимально необходимым количеством контролируемых величин.

Электрическая схема выполняется в одном из трех вариантов, в соответствии с чем САЗ бывают однократного действия, с повторным включением и комбинированными.

САЗ однократного действия осуществляет остановку машины или установки при срабатывании любого реле защиты и делает невозможным автоматический пуск до вмешательства обслуживающего персонала. Этот тип САЗ распространен преимущественно на крупных и средних машинах. Если установка работает без непрерывного обслуживания и оборудование не имеет автоматически включаемого резерва, то САЗ дополняется специальной сигнализацией для экстренного вызова персонала.

САЗ с повторным включением останавливает машину при срабатывании реле защиты и не препятствует ее автоматическому включению при возвращении реле в нормальное состояние. Ее применяют главным образом в малых установках торгового типа, где стремятся к упрощению схемы автоматики.

В комбинированных САЗ часть реле защиты, контролирующих наиболее опасные параметры, включают в электрическую схему однократного действия, а часть с менее опасными параметрами - в схему с повторным включением. Это позволяет, не прибегая к помощи персонала, вновь автоматически пускать машину, если это не сопряжено с опасностью аварии.

На практике встречается также разновидность защиты, называемая блокировкой. Ее отличие состоит в том, что сигнал получают не от реле защиты, а от элемента схемы контроля или управления другим агрегатом или узлом установки (например, насосом, вентилятором и т.д.). Блокировка исключает пуск или работу машины при невыполнении заданного порядка пуска контролируемых агрегатов. Обычно блокировку выполняют по схеме с повторным включением.

Включение аварийных устройств. Этот способ осуществляется также САЗ.

К аварийным устройствам относят:

Предупредительную сигнализацию об опасных режимах, которую применяют на особо крупных установках с непрерывным обслуживанием, чтобы по возможности избежать остановки машины;

Аварийную сигнализацию, информирующую персонал о срабатывании защиты, а также расшифровывающую конкретную причину аварийного срабатывания;

Аварийную вентиляцию, включаемую при повышении местной или общей концентрации в воздухе взрыво- и пожароопасных, а также токсичных рабочих веществ (например, аммиака).

Выпуск рабочего вещества в атмосферу или перепуск в другие аппараты. Этот способ осуществляется специальными предохранительными устройствами (предохранительными клапанами, предохранительными пластинами, плавкими пробками и др.), не входящими в САЗ. Их назначение - предотвратить разрушение или взрыв сосудов и аппаратов при повышении давления в результате неисправности установки, а также в случае пожара. Выбор предохранительных устройств и правила их использования определяются нормативными документами в соответствии с правилами безопасности и эксплуатации сосудов, работающих под давлением.

ПОСТРОЕНИЕ СИСТЕМ ЗАЩИТЫ

Системы защиты различаются в зависимости от типа холодильной установки, ее размеров, принятого способа эксплуатации и др. При построении всех САЗ необходимо учитывать общие принципы, обеспечивающие в наибольшей степени безопасность работы. В качестве примера рассматривается принципиальная схема САЗ компрессионной холодильной установки, состоящей из компрессора Км с электродвигателем Д, теплообменных аппаратов ТА и вспомогательных устройств ВУ - насосов, вентиляторов и др. (рис. 7.1). Схема представлена в общем виде без указаний конкретных величин и параметров, подвергаемых контролю.

Рис. 7.1. Принципиальная схема САЗ

Следует условиться, что САЗ предназначена для остановки компрессора при достижении одним из параметров предельно допустимого значения.

САЗ имеет десять каналов защиты. Каналы 1-8 работают от соответствующих реле защиты, воспринимающих технологические параметры. Каналы 9 и 10 обеспечивают блокировку компрессора и вспомогательных устройств.

В систему входит ключ, с помощью которого при необходимости (при пробах и обкатках) можно выключить часть защитных реле и цепей блокировки (2, 3, 5, 6, 8, 9, 10). Не подлежат выключению те защиты, которые должны функционировать в любом режиме работы установки.

Электрическая схема САЗ состоит из двух частей. Первая часть, в которую включены каналы 2, 5, 9 и 10, работает по способу с повторным включением, а вторая с остальными каналами обеспечивает защиту, работающую по принципу однократного действия, и контролирует наиболее ответственные параметры. При достижении ими предельно допустимых значений САЗ останавливает компрессор. Последующий пуск его возможен лишь после вмешательства персонала, который пользуется специальной кнопкой ввода в работу защит.

Сигналы от электрической схемы САЗ подаются в схему автоматического управления АУ. Эти сигналы останавливают двигатель компрессора независимо от сигналов оперативного управления ОУ.

Кроме основной функции САЗ - аварийной остановки компрессора, она выполняет и вспомогательные операции: включение необходимых аварийных устройств, а также световой и звуковой сигнализации. Расшифровывающая сигнализация защит с повторным включением действует только до тех пор, пока контролируемый параметр не вошел в нормальные пределы. Сигнализация защит однократного действия остается включенной после срабатывания до нажатия кнопки ввода в работу независимо от фактического состояния контролируемого параметра. Такая схема как бы «запоминает» происшедшее срабатывание защиты и информирует персонал в течение неограниченного времени.

Представленная схема может рассматриваться лишь как пример построения САЗ. Конкретные системы могут от нее отличаться количеством каналов и способами их включения.

Основным требованием к САЗ является высокая надежность, которая достигается применением высоконадежных реле защиты и элементов электрических схем, резервированием реле и других элементов защиты в особо ответственных случаях, уменьшением числа элементов, последовательно включаемых в САЗ, использованием наиболее безопасных вариантов электрических схем, организацией профилактических проверок и ремонтов в процессе эксплуатации.

Применение высоконадежных реле защиты и элементов электрических схем - наиболее простой и естественный путь, так как при прочих равных условиях использование более надежных элементов позволяет создать более надежную систему. Следует лишь иметь в виду, что при эксплуатации реле и другие элементы САЗ имеют весьма малую циклическую наработку (малое число срабатываний). Поэтому при оценке надежности в расчет следует принимать не циклическую долговечность и циклическую наработку на отказ, а другие показатели, характеризующие способность элементов сохранять готовность к срабатыванию (например, наработку на отказ по времени). При этом за отказ принимают любое нарушение способности элемента к срабатыванию.

Резервирование представляет собой параллельное включение двух или более однородных и совместно работающих элементов, выполняющих одинаковые функции. Выход из строя одного из них не нарушает работоспособности системы в целом. Резервирование используют в особо опасных случаях, когда внезапный отказ САЗ может привести к серьезным последствиям. К таким случаям относят, например, защиту от попадания жидкого аммиака в поршневой компрессор. Для этого на сосудах перед компрессором устанавливают основные и резервные реле уровня.

На упрощенной схеме (рис. 7.2) показан отделитель жидкого аммиака ОЖ, установленный между испарителем и компрессором Км. При нормальной работе жидкий аммиак в отделителе жидкости отсутствует. При выбросе жидкости из испарителя она накапливается в отделителе жидкого аммиака, и, если ее уровень достигает допустимого предела, срабатывают реле защит РЗ 1 и РЗ 2 (на схеме показаны их первичные преобразователи). Оба реле постоянно включены в работу и выполняют одну и ту же функцию. Такое резервирование значительно повышает надежность, так как вероятность одновременного отказа обоих реле крайне мала.

Уменьшение числа элементов, последовательно включаемых в САЗ, является одним из способов повышения надежности электрических схем САЗ. Наиболее надежна система, в которой реле защиты связаны непосредственно с пускателем двигателя компрессора без промежуточных элементов. Однако такую схему применяют только на самых малых установках. На более крупных установках приходится использовать промежуточные реле, что уменьшает надежность. Поэтому число последовательных промежуточных элементов, входящих в цепь аварийного отключения компрессора, должно быть минимальным.

Рис. 7.2. Упрощенная схема отделителя жидкости с резервированием реле защиты

от влажного хода компрессора

При использовании наиболее безопасных электрических схем обеспечивается остановка компрессора при возникновении отказов в САЗ. Наиболее характерным отказом электрической цепи является обрыв (исчезновение напряжения или тока), что может иметь место при физическом обрыве проводов, подгорании контактов, выходе из строя радиоэлектронных элементов (диодов, транзисторов, резисторов и др.), нарушениях в работе источников электропитания. Для того чтобы указанные отказы сигнализировались как аварийные, необходимо, чтобы в цепях защиты при нормальном состоянии циркулировал ток, а сигнал аварийной остановки соответствовал его прекращению. Следовательно, наиболее безопасной является электрическая схема защиты на нормально замкнутых контактах или других элементах.

Так, в схеме (рис. 7.3) контакты реле защиты РЗ 1 , РЗ 2 и РЗ 3 замкнуты, если контролируемые величины находятся в нормальных пределах, и разомкнуты при достижении предельно допустимых значений. Эти контакты включены последовательно в цепь обмотки электромагнитного реле РА, которое при срабатывании защиты отключает обмотку магнитного пускателя (на схеме не показан) и останавливает компрессор.

Рис. 7.3. Электрическая схема защиты на нормально замкнутых контактах

Когда все контакты реле защит замкнуты, цепь электромагнитного реле можно ввести в работу кратковременным нажатием кнопки КВЗ. При этом через обмотку электромагнитного реле потечет ток, это реле сработает и замкнет свой контакт РА. После отпускания кнопки цепь остается под током. Достаточно одному из реле защит разомкнуть контакт, как электромагнитное реле отпустит и его контакт разомкнется. Повторное включение будет возможно только после нажатия кнопки. Это схема однократного действия. В схеме с повторным включением контакт РА и кнопка не требуются.

Организация профилактических проверок и ремонтов в процессе эксплуатации играет решающую роль в обеспечении безопасной работы установок. Эти меры, если они выполняются через необходимые промежутки времени, практически исключают опасные ситуации, связанные с внезапными отказами в саз.

Для организации профилактических проверок необходимо, чтобы САЗ снабжались устройствами и приспособлениями, позволяющими по возможности в полном объеме проверять работоспособность защит. При этом желательно, чтобы проверка не вызывала вывода установки за предельно допустимые режимы. Так, в схеме (см. рис. 7.2) проверить работу реле защит можно без наполнения отделителя жидкости.

При нормальной работе вентили В 1 и В 2 открыты, а вентиль В 3 закрыт. Первичные преобразователи реле защит РЗ 1 и РЗ 2 подключены к сосуду.

Для проверки закрывают вентиль В 2 и открывают вентиль В 3 . Из трубопровода жидкость подается непосредственно в поплавковые камеры реле уровня и заполняет их. Если реле исправны, то они, срабатывая, выдают соответствующие сигналы.

После этого вентиль В 3 закрывают, а вентиль В 2 открывают. Жидкость стекает в сосуд, что свидетельствует об отсутствии засорения соединительного патрубка.

В процессе эксплуатации должен действовать график профилактических проверок, периодичность которых должна быть выбрана с учетом фактических показателей надежности.

СОСТАВ САЗ

Количество параметров, контролируемых с помощью САЗ, зависит от вида оборудования, его размеров и производительности, вида хладагента и др. Обычно число защит увеличивается с увеличением размеров оборудования. Более сложные САЗ обычно применяют на аммиачных установках.

В табл. 7.1 приведен рекомендуемый перечень контролируемых параметров для наиболее распространенных видов холодильного оборудования. Для некоторых видов оборудования предлагается несколько вариантов набора защит, которые выбираются исходя из конкретных условий. Так, для герметичных компрессоров можно использовать два варианта. Вариант со встроенными устройствами для защиты от повышения температуры обмоток электродвигателей является предпочтительным, так как при том же числе приборов обеспечивается защита от большего числа неисправностей.

В табл. 7.1 не вошли компрессоры бытовых холодильников и кондиционеров.

Некоторые из защит, входящих в состав САЗ, не обязательно вводить в схему однократного действия, при необходимости допускается включать их в схему с повторным включением.

На особо крупных установках с винтовыми и центробежными компрессорами целесообразно применять предупредительную сигнализацию. При достижении параметров предельно допустимых значений включается предупредительная сигнализация. Компрессор останавливается лишь в том случае, когда через заданный промежуток времени параметр не войдет в нормальные пределы. Параметры, допускающие включение через предупредительную сигнализацию, также отмечены в табл. 7.1. При этом следует обратить внимание на надежность устройства временной задержки и при необходимости принять соответствующие меры, например резервирование.


Таблица 7.1


Оборудование Давление Температура Уровень жидкости Осевой сдвиг вала Область применения
кипения (температура) всасывания нагнетания нагнетания масла масла редуктора обмоток электродвигателя подшипников выходящего теплоносителя
Компрессор поршневой герметичный +* +* +* +* +* +* + Хладоновые компрессоры малых холодильных установок (торговое оборудование, кондиционеры и др.) То же »
Компрессор поршневой бессальниковый + + + + + +* + + + + + +* + + + + + + + Хладоновые компрессоры средней производительности То же Хладоновые компрессоры большой производительности То же Хладоновые компрессоры малых холодильных установок
Компрессор поршневой открытый + + + + + + + Хладоновые и аммиачные компрессоры средней производительности То же, большой производительности

Окончание табл. 7.1

Оборудование Давление Перепад давлений в маслосистеме Температура Уровень жидкости Осевой сдвиг вала Область применения
кипения (температура) всасывания нагнетания нагнетания масла масла редуктора обмоток электродвигателя подшипников выходящего теплоносителя
Агрегат компрессорный винтовой +** + + +**
Агрегат компрессорный центорожный +** + + +** +** +** +** + Аммиачные и хладоновые агрегаты
Аммиачный кожухотрубный испаритель +*** Без ограничения
Испаритель хладоновый с межтрубным кипением +*** То же
Испаритель хладоновый с внутритрубным кипением +*** »
Отделитель жидкости, ресивер циркуляционный + »

Примечание. Звездочка (*) означает, что предусматривается защита:

* Допускается включение по схеме с повторным включением.

** Допускается остановка компрессора после включения предупредительной сигнализации.

*** Допускается включение через предупредительную сигнализацию.


АВТОМАТИЗАЦИЯ СИСТЕМ

КОНДИЦИОНИРОВАНИЯ ВОЗДУХА


Похожая информация.


Холодильные машины и установки могут быть автоматизированы частично или полностью. Частично автоматизированные установки требуют постоянного присутствия обслуживающего персонала и его активного участия в управлении. В полностью автоматизированных установках обслуживающий персонал только наблюдает за их работой.

В схемах автоматизации холодильных установок применяют помимо описанных систем регулирования, защиты и сигнализации следующие виды автоматического управления: пуск агрегатов в заданной последовательности; автоматическое включение рассольных насосов, вентиляторов воздухоохладителей, вентилей и задвижек с электроприводом;

полуавтоматическое управление, при котором после автоматического выключения машин приборами защиты и регулирования их включение производится вручную;

дистанционное управление отдельными узлами и механизмами со щита управления.

На рис. 1 показана расстановка средств автоматизации в схеме аммиачной двухступенчатой холодильной машины.

Рис.1.

МО -- маслоотделитель, ОК -- обратный клапан, РТ -- реле температуры, РД -- реле давления, СВ -- соленоидный вентиль, ПС -- промежуточный сосуд, РУ -- регулятор уровня, ОЖ -- отделитель жидкости, КМ НС и КМ ВС -- компрессоры низкой и высокой ступени, РР -- реле расхода, РКС -- реле контроля смазки, РВ -- регулирующий вентиль, Д -- двигатель, ПР -- поплавковый регулятор

Объектами регулирования в таких машинах являются: заполнение испарителей и ресиверов; температура испарения; температура конденсации, проток воды; давление масла; уровень в промсосуде.

Холодильные турбоагрегаты выпускают с автоматическим регулированием холодопроизводительности в зависимости от изменений тепловой нагрузки. Работа отдельных узлов турбоагрегата также автоматизирована. Подача хладагента в испарители с одновременным дросселированием производится поплавковым регулирующим вентилем ПРВ, получающим импульс от поплавкового датчика.

В большинстве случаев в системе смазки турбокомпрессоров имеются два насоса с приводом от разных источников -- рабочий, приводимый в движение от вала машины или сети переменного тока, и резервный, работающий на постоянном токе (от аккумуляторной батареи или от выпрямителя тока). При пуске машины автоматически включается пусковой насос, и лишь после того, как он создаст необходимое давление, включается двигатель компрессора. Когда машина разовьет полное число оборотов, пусковой насос автоматически выключается и смазка начинает подаваться рабочим насосом.

Автоматизируются и другие элементы, обеспечивающие безопасную работу турбокомпрессоров: противопомпажная защита, защита двигателя от перегрузки и других нарушений режима, создающих аварийную ситуацию. Турбокомпрессоры оборудуются также устройствами автоматического выключения при чрезмерном увеличении давления нагнетания, недопустимом падении давления смазки, перегреве подшипников и сильном падении температуры кипения хладагента. Для этого в различных точках турбоагрегатов ставятся специальные датчики. Импульсы от них передаются на реле, срабатывание которого приводит к остановке агрегата.

Автоматическая противоаварийная защита поршневого компрессора включает защиту от попадания жидкого хладагента во всасывающий трубопровод компрессора и от недопустимых отклонений параметров компрессоров от нормальных рабочих значений.

Защиту от попадания жидкого хладагента во всасывающий трубопровод компрессора обеспечивает автоматический контроль уровней в аппаратах стороны низкого давления; при достижении недопустимых уровней предусматривается аварийная остановка компрессоров и подача сигнала в схему автоматизации.

Защита компрессора одноступенчатого сжатия от недопустимых отклонений рабочих параметров должна предусматривать отключение его электродвигателя при отклонениях ниже допустимого значения давления всасывания и разности давлений в системе смазки, выше допустимого значения давления нагнетания и температуры нагнетания, а также при прекращении протока воды через охлаждающие рубашки компрессора.

Защита компрессора двухступенчатого сжатия должна предусматривать отключение компрессора при отклонениях ниже допустимого значения: давления всасывания низкой ступени, разности давлений в системе смазки; выше допустимого значения: давлений нагнетания низкой и высокой ступеней, температур нагнетания низкой и высокой ступеней, уровня жидкого хладагента в промежуточном сосуде, а также при прекращении протока воды через охлаждающие рубашки компрессора.

Система автоматической защиты не должна допускать самозапуск машины до устранения причины, вызвавшей срабатывание защиты.

Автоматизация работы испарительного узла имеет целью регулирование заполнения испарителей жидким хладагентом, автоматическое регулирование температуры хладоносителя, управление работой насосов для его циркуляции, а также защиту испарителей от замерзания хладоносителя.

Система автоматизации конденсаторной группы предусматривает: контроль за уровнем жидкого хладагента в линейном ресивере, управление работой водяных насосов, регулирование уровня воды в бассейнах или резервуарах, управление вентиляторами испарительных конденсаторов и вентиляторных градирен.



erkas.ru - Обустройство лодки. Резиновые и пластиковые. Моторы для лодок