Ветряки на дисковых аксиальных генераторах. Ветряк с дисковым аксиальным генератором Армейский аксиальный генератор параметры завода

В наш век компьютерной техники и высоких технологий, многие стали задумываться об альтернативных источниках энергии — ведь богатства земных недр не безграничны. Идея использования энергии движения воздушных масс в качестве такого источника далеко не нова, но только в наше время начинает приобретать более очевидные (с точки зрения практического использования) очертания. Теперь, благодаря применению новых технологий и конструкционных материалов, стало возможным даже приобретение (или изготовление) таких установок для использования частными лицами — на ветроагрегат, установленный для дома на территории соседнего дачного участка уже не приходят глазеть толпы зевак — такое зрелище начинает становится почти обыденным.

Кардинально поменялись некоторые узлы и агрегаты ветроустановок. Если раньше генератор ветряка представлял из себя стандартную конструкцию со щеточными или кольцевыми токосъемниками, которые довольно изрядно шумели при работе (так что установка такого агрегата в жилом секторе считалась невозможной), то сейчас, с появлением сверхмощных неодимовых магнитов,

которые теряют за 10 лет лишь около 1 процента своей мощности, стало возможным изготовление одно- или трехфазных генераторов работающих почти бесшумно и при минимальных ветровых нагрузках (0,5-2,5 м/c). Появились и серьезные новации в области конструктива ветроколеса. Если раньше повсемесно применялась конструкция ветрогенератора с параллельным (по отношению к Земле) расположением оси вращения,

то сейчас все большую популярность приобретают конструкции с применением аксиального вертикального ветряка.

Применение такой конструкции обусловлено несколькими факторами: лопасти ветроколеса с горизонтальной осью вращения, направленные в сторону воздушного потока и рассекая его, создают высокий уровень шума (порядка 70, а в некоторых случаях и более децибел); для »запуска» генератора, оснащенного таким ветроколесом, требуется достаточно сильный воздушный поток — порядка 8-10 м/с (попробуйте отыскать район на планете, где ветер постоянно дул бы с такой скоростью!), как следствие — применение высоченных мачт для расположения таких конструкций; для установки ветроколеса »по ветру» требуется применение специальных »рулевых» механизмов; кроме этого необходима система торможения на случай сильного ветра. Всех этих недостатков лишена конструкция аксиального ветрогенератора с вертикальной осью вращения (см.фото). Конструкцию не нужно поднимать высоко над землей — достаточно 1-4 метров (для генератора мощностью 1,5 кВт); высота лопасти ветроколеса равна примерно 1 метру (против 3-х для генератора такой же мощности, но с горизонтальным расположением оси винта); для вращения такого агрегата, при котором он способен отдавать в нагрузку достаточную мощность, хватает легкого ветерка (1,5 м/c). Все эти факторы являются надежной предпосылкой к покупке или самостоятельному изготовлению для дома таких ветроагрегатов.

Полученную энергию легко применять для бытовых целей напрямую (с помощью инвертора) и запасать (аккумуляторы). Мощность (количество) ветроагрегатов и аккумуляторов можно высчитать по простым формулам: Wобщая = Wнагрузки * (1,3 или 1,5) — эта величина зависит от »ветроресурсов» вашего района.Количество требуемых батарей тоже можно примерно расчитать, помножив необходимую вам мощность (W) потребления в сутки на количество безветренных дней. Кроме этого, в практике самодельщиков появились схемы отопления жилища с применением ветрогенераторов, где нагрузкой являются низковольтные нагреватели (ТЭНы) погруженные в энергоемкий теплоноситель. Целесообразным считается и применение гибридных схем альтернативного энергоснабжения, с совмесным применением ветрогенераторов и солнечных батарей — смотрите нашу статью-анонс »Солнечные батареи ». В заключении хочется привести небольшое но очень важное замечание: при самостоятельном изготовлении ветрогенераторов, соблюдайте правила безопасности при работе с мощными неодимовыми магнитами — испорченный телевизор, деформированная дверца холодильника или вашей любимой машины еще не самое страшное. Гораздо страшнее раздробленные кости пальцев, зажатые между двумя магнитами или пробитые острыми металлическими инструментами руки — не очень приятно, когда лежащий на верстаке нож вдруг взлетает и с расстояния в пол-метра втыкается вам в руку, в которой находится магнит. Не нагревайте и не применяйте сильных ударных нагрузок к магнитам — нагревание (в результате обработки) приводит к потери магнитных свойств, а сильное нагревание приводит к воспламенению с выделением ядовитых веществ. Что, напугали мы вас? Не печальтесь — соблюдение всех вышеизложенных правил позволит вам избежать травм и порчи имущества, а изготовленный для дома агрегат будет радовать своей безотказной работой! Автор статьи: Электродыч.

Ветрогенератор на базе самодельного аксиального дискового генератора. Его я построил пару лет назад.

Конструкция этого генератора – первое, что находишь в сети из практических моделей ветротурбин. В узком кругу мы их называем – буржуйскими. Именно они начали использовать такую компоновку генератора, в связи с доступностью редкоземельных магнитов. Сейчас и у нас эта модель повторяется достаточно часто.
На первый взгляд это самая доступная конструкция. Отчасти это так, но эффективность безжелезных статоров много ниже аналогичных с железом. Для таких генераторов, магниты нужны толще, и количество в два раза больше. Итак, подробнее о сути проекта.
Генератор имеет 16 пар полюсов. Магниты использовались неодимовые, диск. Диаметр 27 мм, высота 8 мм. Очень серьезные штучки. При неаккуратном обращении можно получить серьезную травму! Катушек использовалось 12. Генератор трехфазный. Соединение «звезда».
Для намотки катушек использовался провод 0.9 мм, хотя расчет делал под провод 1.06 мм. Но его не оказалось на тот момент. По этой причине, между катушками есть пустое пространство, а генератор не вышел на расчетные параметры. Катушки мотал на самодельном станочке. Ни чего особенного.

Конструкция может быть абсолютно любая.



Для статора, была изготовлена форма из фанеры.

После обработки формы вазелином (необходимо для того, что бы отлитый статор легко извлечь из формы), расположил катушки.
Распаял соответствующим образом.



Развел эпоксидную смолу с добавкой 30 % талька (детская присыпка). На дно формы и поверх катушек я положил стеклосетку, так как с ней мне удобней работать, чем со стеклотканью. Залил статор, постепенно доливая смолу, чтобы выходили пузырьки воздуха.
Для того чтобы притянуть крышку, я разметил так, что бы саморезы проходили сквозь отверстие катушки (дабы не повредить). Отверстие катушки замазал пластилином (после высыхания удалил его), для лучшего охлаждения.
На следующий день без проблем извлек готовый статор из формы. Получился он ровный и красивый.



Для изготовления ротора, я взял заднюю ступицу от Ваз 2108 в сборе. Стоит не дорого и достаточно мощная. На автосервисе мне дали тормозных дисков, опять же от восьмерки (девятки). Диски диаметр 240 мм. толщина 10 мм. Отшлифовав рабочую поверхность, наклеил магниты. Клеил суперклеем, потом залил эпоксидной смолой.



Сварил ветроголовку и закрепил на ней генератор. Хвост жестко закреплен, то есть бурезащита не выполнена.





Лопасти из ПВХ трубы диаметром 160 мм. Делал и трехлопастной вариант и пятилопастник. Оба варианта нормально работали.


Некоторые выводы.
Зарядка АКБ начинается почти сразу, как только он начинает вращаться (а вращается он от любого дуновения). 1-2 ампера от легкого ветерка, при небольших порывах 4-5 Ампер. При нормальном ветре в районе 10 А.
Вывод: цель достигнута (зарядка АКБ при слабых ветрах).


При сильном ветре фиксировал 20 А, больше прибор не показывает.
Сейчас эта модель демонтирована. При осмотре, ни каких повреждений не обнаружилось, хоть и было все даже не покрашено.
Планирую провести с ним некоторые эксперименты.

Ну а вот собственно и те издевательства о которых я говорил.
Я хочу проверить еще один вариант. Использовать вместо этс в статоре генератора отожженные железные опилки.
Опилки не мелкие и не крупные.
Так как все делалось в очень ограниченных по времени условиях, да и температура - 10, ни как ни способствовала трудовому подвигу, результаты соответствующие. Опять же использовался готовый статор, не предназначенный для этого. Тем не менее, все по порядку. На фото виден весь процесс. Опилки я смешивал не с эпоксидкой, а с силиконовым герметиком.
Получилась такая пластичная масса, с которой было легко работать.






И таблица испытаний этого варианта.

Думаю такой вариант, выполненный по всем правилам, даст вполне рабочий вариант.

Неодимовый магнит – это редкоземельный металл, обладающий стойкостью к размагничиванию и способностью намагничивать некоторые материалы. Используется при изготовлении электронных устройств (жесткие диски компьютеров, металлодетекторы и т.д.), медицине и энергетике.

Неодимовые магниты используются при изготовлении генераторов, работающих в различных видах установках, вырабатывающих электрический ток.

В настоящее время генераторы, изготовленные с использованием неодимовых магнитов, широко используются при изготовлении ветровых установок.

Основные характеристики

Для того, чтобы определиться в целесообразности изготовления генератора на неодимовых магнитах, нужно рассмотреть основные характеристики данного материала, которыми являются:

  • Магнитная индукция В — силовая характеристика магнитного поля, измеряется в Тесла.
  • Остаточная магнитная индукция Br — намагниченность, которой обладает магнитный материал при напряжённости внешнего магнитного поля, равной нулю, измеряется в Тесла.
  • Коэрцитивная магнитная сила Hc — определяет сопротивляемость магнита к размагничиванию, измеряется в Ампер/метр.
  • Магнитная энергия (BH)max -характеризует, насколько сильным является магнит.
  • Температурный коэффициент остаточной магнитной индукции Tc of Br – определяет зависимость магнитной индукции от температуры окружающего воздуха, измеряется в процентах на градус Цельсия.
  • Максимальная рабочая температура Tmax — определяет предел температуры, при которой магнит временно теряет свои магнитные свойства, измеряется в градусах Цельсия.
  • Температура Кюри Tcur — определяет предел температуры, при которой неодимовый магнит полностью размагничивается, измеряется в градусах Цельсия.

В состав неодимовых магнитов, кроме неодима входит железо и бор и зависимости от и их процентного соотношения, получаемое изделие, готовый магнит, различается по классам, отличающимся по своим характеристикам, приведенным выше. Всего выпускается 42 класса неодимовых магнитов.

Достоинствами неодимовых магнитов, определяющими их востребованность, являются:

  • Неодимовые магниты обладают наиболее высокими магнитными параметрами Br, Нсв, Hcм, ВН.
  • Подобные магниты имеют более низкую стоимость в сравнении с подобными металлами, имеющими в своем составе кобальт.
  • Обладают способностью работать без потерь магнитных характеристик в температурном диапазоне от – 60 до + 240 градусов Цельсия, с точкой Кюри +310 градусов.
  • Из данного материала возможно изготовить магниты из любой формы и размеров (цилиндры, диски, кольца, шары, стержни, кубы и др.).

Ветрогенератор на неодимовых магнитах мощностью 5,0 кВт

В настоящее время отечественные и зарубежные компании все более широко используют неодимовые магниты при изготовлении тихоходных генераторов электрического тока. Так ООО «Сальмабаш», г. Гатчина Ленинградской области, выпускает подобные генераторы на постоянных магнитах мощностью 3,0-5,0 кВт. Внешний вид данного устройства приведен ниже:

Корпус и крышки генератора изготавливаются из стали, в дальнейшим с покрытием лакокрасочными материалами. На корпусе предусмотрены специальные крепления, позволяющие закрепить электрический аппарат на несущей мачте. Внутренняя поверхность обработана защитным покрытием, предотвращающим коррозию металла.

Статор генератора набран из электротехнических пластин стали.

Обмотка статора — выполнена эмаль-проводом, позволяющим устройству работать продолжительное время с максимальной нагрузкой.

Ротор генератора имеет 18 полюсов и установлен в подшипниковых опорах. На ободе ротора размещены неодимовые магниты.

Генератор не требует принудительного охлаждения, которое осуществляется естественным путем.

Технические характеристики генератора мощностью 5,0 кВт:

  • Номинальная мощность – 5,0 кВт;
  • Номинальная частота – 140,0 оборотов/минуту;
  • Рабочий диапазон вращения – 50,0 – 200,0 оборотов/минуту;
  • Максимальная частота – 300,0 оборотов/минуту;
  • КПД – не ниже 94,0 %;
  • Охлаждение – воздушное;
  • Масса – 240,0 кг.

Генератор оснащен клеммной коробкой, посредством которой осуществляется его подключение к электрической сети. Класс защиты соответствует ГОСТ14254 и имеет степень IP 65 (пылезащищенное исполнение с защитой от струй воды).

Конструкция данного генератора приведена на рисунке, приведенном ниже:

где: 1-корпус, 2- крышка нижняя, 3- крышка верхняя, 4- ротор, 5- неодимовые магниты, 6- статор, 7- обмотка, 8- полумуфта, 9- уплотнения, 10,11,12- подшипники, 13- клеммная коробка.

Плюсы и минусы

К достоинствам ветрогенераторов, изготовленных с использование неодимовых магнитов можно отнести следующие характеристики:

  • Высокий КПД устройств, достигаемый за счет минимизации потерь на трение;
  • Продолжительные сроки эксплуатации;
  • Отсутствие шума и вибрации при работе;
  • Снижение затрат на установку и монтаж оборудования;
  • Автономность работы, позволяющая осуществлять эксплуатацию без постоянного обслуживания установки;
  • Возможность самостоятельного изготовления.

К недостаткам подобных устройств можно отнести:

  • Относительно высокая стоимость;
  • Хрупкость. При сильном внешнем воздействии (ударе), неодимовый магнит способен лишиться своих свойств;
  • Низкая коррозийная стойкость, требующая специального покрытия неодимовых магнитов;
  • Зависимость от температурного режима работы – при воздействии высоких температур, неодимовые магниты теряют свои свойства.

Как сделать своим руками

Ветровой генератор на основе неодимовых магнитов отличается от прочих конструкций генераторов тем, что легко может быть изготовлен самостоятельно в домашних условиях.

Как правило за основу берут автомобильную ступицу или шкивы от ременной передачи, которые предварительно очищаются, если это бывшие в употреблении запасные части и подготавливаются к работе.

При наличии возможности изготовить (выточить), специальные диски, лучше остановиться на этом варианте, т.к. в этом случае не придется подгонять геометрические размеры наматываем ых катушек к размерам используемых заготовок.

Неодимовые магниты следует приобрести, для чего можно воспользоваться сетью интернет или услугами специализированных организаций.

Один из вариантов изготовления генератора на неодимовых магнитах, с использованием дисков, специально изготовленных для этих целей, предлагает к рассмотрению Яловенко В.Г. (Украина). Данный генератор изготавливается в следующей последовательности:

  1. Из листовой стали вытачиваются два диска диаметром 170,0 мм с устройством центрального отверстия и шпоночного паза.
  2. Диск делится на 12 сегментов, для на его поверхности выполняется соответствующая разметка.
  3. В размеченные сегменты клеятся магниты, таким образом, чтобы их полярность чередовалась. Для избегания ошибок (по полярности), необходимо перед наклейкой, выполнить их маркировку.
  4. Подобным образом изготавливается и второй диск. В результате получается следующая конструкция:

  1. Поверхность исков заливается эпоксидной смолой.
  2. Из провода (эмаль-провода) марки ПЭТВ или аналога, сечением 0,95 мм 2 , наматывается 12 катушек по 55 витков в каждой.
  3. На листе фанеры или бумаге, изготавливается шаблон, соответствующий диаметру используемых дисков, на котором также производится разбивка на 12 секторов.

Катушки укладываются в размеченные сегменты, где фиксируются (изолента, скотч и т.д.) и расключаются последовательно между собой (конец первой катушки соединяется с началом второй и т.д.). в результате получается следующая конструкция

  1. Из дерева (доска и т.д.) или фанеры, изготавливается матрица, в которой можно залить эпоксидной смолой уложенные по шаблону катушки. Глубина матрицы должна соответствовать высоте катушек.
  2. Катушки укладываются в матрицу и заливаются эпоксидной смолой. В результате получается следующая заготовка:

  1. Из стальной трубы диаметром 63,0 мм изготавливается ступица с узлом крепления вала, изготавливаемого генератора. Вал монтируется на подшипники, устанавливаемые внутри ступицы.
  2. Из такой же трубы изготавливается поворотный механизм, обеспечивающий ориентацию генератора в соответствии с потоками ветра.
  3. На вал одеваются изготовленные запасные части. В результате получается следующая конструкция, плюс поворотный механизм:


Многие мечтают создать для ветротурбины генератор своими руками. Достать стальную электротехническую холоднокатанную анизотропную ленту не всегда возможно. По этой причине рассмотрим способ изготовить сердечник статора с подручных материалов. Такие генераторы просты в изготовлении и достаточно эффективны.

Вот один из примеров, как создать торцевой аксиальный генератор для ветротурбины. Для изготовления статора могут подойти пластины от старых 110 вольтовых звуковых трансформаторов. На рынке их достаточное количество и пластины у них легко отделяются друг от друга.

В качестве магнитов используем диски размером 19х4 мм, соответственно этим размерам рассчитываем и размеры статора. Размечаем на бумаге контуры статора. По всей окружности должно равномерно разместиться 24 зуба (8 катушек на 3 фазы), и соответственно 16 выводов с каждой группы. В результате внешний диаметр статора составляет 145 мм, а внутренний – 105 мм. Заполняем пространство между внешним и внутренним диаметром пластинами, которые соединяем между собой при помощи суперклея.

Результатом нашей работы получилась вот такая заготовка статора.

Наклеиваем ее на фанеру и пропитываем эпоксидной смолой. Когда конструкция высохнет, необходимо ножовкой удалить все ненужные части фанеры, оставив немного с внутренней стороны, а также внешний ободок. Он будет использоваться в качестве площадки для крепления. Сами зубцы аккуратно обрабатываем напильником. Чтобы во время обработки пластины не отделялись от общей конструкции, каждый обрабатываемый зуб обжимаем небольшой струбциной. Все работы должны выполняться очень внимательно. Ведь даже несколько небольших острых выступов могут повредить изоляцию провода. Если есть возможность, лучше на зубцы надеть усадочную трубку. Каждому известно, что процесс переделывания всегда намного труднее, чем изготовление.

Катушки лучше наматывать непосредственно на месте, чем отдельно с последующим надеванием на зуб. В этом случае она будет плотнее прилегать к пластинам статора, и устройство в целом будет иметь лучшие электротехнические показатели. Провод для катушек лучше выбирать 0,7 мм. Есть возможность делать обмотки проводом 0,5 мм, но тогда генератор будет выдавать ток меньшей величины, когда напряжение будет достаточным в обоих случаях. Чем плотнее витки провода будут прилегать друг к другу, тем будет лучше, поэтому спешить и делать все быстро, но не совсем качественно, не рекомендуется.

Готовый статор устанавливаем на ступицу. В качестве ее может служить часть помпы от Уазика. Конструкция в этом случае будет прочная и более легкая, чем использование деталей от других автомобилей, например Ваз 2108. Обмотки генератора соединяются по схеме «звезда». Зачастую проверить дома готовое изделие на стенде нет возможности, но существует более примитивный метод, которым возможно сделать приблизительные измерения. На спицы наматывается веревочка. Когда за нее тянуть не очень сильно, на выходе будет ток около 6 А. Если приложить больше усилий, есть возможность увеличить ток до 11,5 А и напряжение 12,4 В.

Когда основные работы сделаны, к изделию крепятся три лопасти по 1,7 м и все вместе закрепляется на открытой местности. Вес изготовленной конструкции не превышает 4 кг. Изделие, конечно, имеет некоторые недостатки, так как собрано из подручных средств. В частности площадь магнита больше площади зуба. Но даже в данном варианте, когда скорость вращения за минуту достигает 900 оборотов, мощность на выходе становит не менее 200 ватт.

Трёхфазный ток. Преимущества при генерации и использовании Как поставить розетку

Небольшие разъяснения и комментарии автора для тех,
кто самостоятельно желает изготовить низкооборотный генератор своими руками.

Если у желающего изготовить низкооборотный генератор есть финансовые средства, коллектив единомышленников, техническое оборудование, соответствующие знания и опыт, то это совсем не сложно. Однако в любом деле существует много тонкостей, которые необходимо будет знать в процессе изготовления данного генератора, так как без знаний основ конструирования и не имея соответствующего опыта, сразу изготовить хороший генератор может не получится. В данной статье я постараюсь выделить некоторые нюансы, чтобы у изготовителя было меньше ошибок. Здесь не будут затронуты генераторы или двигатели промышленного изготовления, из которых можно что-либо переделать, так как без соответствующих расчётов у вас получится только жалкое подобие низкооборотного генератора.

В качестве примера возьмём один модуль низкооборотного генератора Белашова МГБ-300-144-2.

Фиг. 1 Фиг. 2 Фиг. 3

◄|| Фотографии и технические характеристики электрических машин Белашова ||

Электрическая машина
Электрическая машина
Электрическая машина
Низкооборотная машина
Низкооборотная машина
Низкооборотная машина
Низкооборотный генератор
Низкооборотный генератор
Низкооборотный генератор
Низкооборотный генератор
Низкооборотный генератор

◄|| Фотографии электрических машин ||

Электрическая машина
Сварочный генератор
Автомобильный генератор
Низкооборотная машина
Низкооборотная машина
Низкооборотная машина
Низкооборотный генератор
Низкооборотный генератор
Низкооборотный генератор
Низкооборотный генератор
Низкооборотный генератор

◄|| Характеристики электрических машин ||

Модульный низкооборотный генератор Белашова МГБ-300-144-2, предназначен для технических устройств, которые преобразуют большой момент силы, при низких оборотах, в электрическую энергию и могут быть использованы для ветряных двигателей, ручных аварийных энергетических установок, бесплотинных гидроэлектростанций и так далее…

В данной конструкции однофазного низкооборотного генератора применено два ряда многовитковых обмоток, но внутри этого генератора можно разместить ещё два ряда многовитковых обмоток сделав его двухфазным, что увеличит мощность генератора в два раза. В зависимости от количества модулей потребитель может самостоятельно комплектовать из отдельных модулей любые параметры генератора, на необходимое напряжение, нужный ток и заданное количество оборотов.

Первый вопрос, который обычно задают покупатели, это КПД низкооборотных генераторов при этом они не знают, что данная величина является не определённой, которая зависит от многих параметров или величин и прежде всего от того как был сделан сам генератор. Приведу конкретный пример, как влияет КПД генератора, если не правильно или не качественно изготовлены многовитковые обмотки статора, так как данная деталь является очень важной и влияет на многие характеристики низкооборотного генератора.

При изготовлении многовитковых катушек статора для низкооборотного генератора необходимо учитывать, что существуют прямоугольные или круглые провода и множество типов намоток, но в данном случае мы рассмотрим только три вида намоток изображённых на Фиг.4:

Рядная намотка многовитковых обмоток поз.1

Намотка многовитковых обмоток в шахматном порядке поз.2

Намотка многовитковых обмоток в беспорядочном виде (в навал) поз.3.

Фиг. 4

Самой важной характеристикой катушки является коэффициент намотки (степень заполнения обмоточного пространства многовитковой катушки медью) - отношение площади меди катушки к площади обмоточного пространства:

Где:

W - число витков катушки,

Q - сечение провода с изоляцией, мм²

S - площадь поперечного сечения обмоточного окна, мм².

При этом необходимо учитывать, что толстым проводом произвести намотку многовитковых обмоток статора очень сложно и тем более создать её точный профиль для правильного вхождения в магнитную систему ротора. Более тонким проводом можно увеличить коэффициент намотки, а при помощи параллельного или последовательного соединения обмоток статора довести расчётное сечение провода до нужной величины. Например, в статоре однофазного низкооборотного генератора МГБ-300-144-2, расположено два ряда многовитковых обмоток, которые были намотаны в беспорядочном виде проводом имеющего диаметр 0,29 мм (так как у меня не было возможности изготовить рядную обмотку). Внешние многовитковые обмотки статора имеют по 580 витков. Внутренние обмотки статора состоят из 360 витков. В итоге получается, что статор генератора содержит 16920 витков. Значит если на каждой многовитковой обмотке (с учётом коэффициента намотки) мы не домотали хотя бы по 20 витков, то в итоге у нас получается, что мы не смогли домотать на наш статор ещё 720 витков. Если в каждом ряду статора низкооборотного генератора расположено две фазы по два ряда многовитковых обмоток, то у нас получится, что мы потеряли 1440 витков, фиг.5.

Фиг. 5

Обычно обмоточный коэффициент находится в пределах 0,5 - 0,8, но необходимо знать, что чем выше коэффициент намотки, тем будут лучше характеристики низкооборотного генератора. Он наиболее высок при шахматной намотке многовитковых обмоток самоспекаемыми эмалированными проводами. Преимущество данных эмалированных проводов является то, что они склеиваются при помощи лака под действием тепла или растворителей. После спекания образуется самонесущая намотка. Применение самоспекаемых эмалированных проводов имеет преимущество в цене и при изготовлении, так как намоточные каркасы, клейкая лента, компаунд и пропиточные материалы могут быть сэкономлены. Причём необходимо обратить особое внимание на то, что для лучшего охлаждения многовитковых обмоток самоспекающиеся эмалированные катушки статора должны плотно примыкать через теплопроводящий диэлектрик к алюминиевому корпусу низкооборотного генератора, так как для нормальной работы генератора отвод тепла от многовитковых обмоток является главной задачей, которая влияет на КПД генератора.

Производители низкооборотных генераторов для ветряных установок, мини ГЭС или переносных электростанций, должны сообщать своим покупателям все преимущества и недостатки этих машин. Покупатели должны знать некоторые важные технические характеристики генератора:

Внутреннее сопротивление многовитковых обмоток генератора не только при 20°С, но и при изменении температуры многовитковых обмоток генератора от 20°С до 80°С,

Ток короткого замыкания многовитковых обмоток генератора на заданных количествах оборотах, не только при 20°С, но и при изменении температуры многовитковых обмоток генератора от 20°С до 80°С, где участвует только r o ,

Рабочий ток генератора на заданных количествах оборотах, не только при 20°С, но и при изменении температуры многовитковых обмоток генератора от 20°С до 80°С, где участвует r o + r н ,

При изготовлении статора или ротора из стального магнитопровода, на котором установлены многовитковые обмотки, необходимо знать тормозной момент ротора генератора,

Рабочее напряжение генератора, на заданных количествах оборотах,

Напряжение холостого хода генератора (без какой-либо нагрузки),

Способ отвода тепла от многовитковых обмоток генератора.

Данные технические характеристики нужны для согласования внутреннего сопротивления многовитковых обмоток генератора с нагрузкой, так как для получения наибольшей мощности во внешней цепи сопротивление нагрузки должно быть равно внутреннему сопротивлению генератора. Например, если многовитковые обмотки генератора имеют большое внутреннее сопротивление, то данный тип генератора менее подвержен колебаниям выходного напряжения. У генератора имеющего маленькое внутреннее сопротивление, падение выходного напряжения может превышать 40%. Существуют и другие тонкости в выборе низкооборотных генераторов. Например, если измерение технических характеристик генератора производились при температуре 20°С, то при температуре 70°С вы можете недосчитаться больше половины от заявленной производителем мощности и так далее… Докажем это на конкретных примерах.

Изменение температуры статора низкооборотного генератора (как и других электрических машин) вызывает изменение сопротивления внутри многовитковых обмоток при его работе и даже в не рабочем положении тогда когда низкооборотный генератор был установлен на ветродвигателе, который расположен на Солнце.

Такое изменение сопротивления проводника от температуры, приходящееся на каждый Ом сопротивления данного проводника при изменении температуры его на 1°С, называют температурным коэффициентом «альфа» (a). Таким образом, температурный коэффициент характеризует чувствительность изменения сопротивления проводника к изменению температуры. В данном случае у нас медные обмотки, которые обладают температурным коэффициентом, а = 0,004041.

Например, зная температурный коэффициент меди, мы можем определить внутреннее сопротивление многовитковых обмоток статора, которое произошло при изменении температуры статора, который нагрелся на Солнце до 70°С.

Формула для определения температурного коэффициента выглядит так:

Где:

R 1 – сопротивление данного проводника при одной температуре – T 1 ,

R 2 – сопротивление того же проводника, но при другой температуре – T 2 ,

А – температурный коэффициент металла, из которого проводник сделан,

T 2 - конечная температура обмоток из которого проводник сделан проводник °С,

T 1 - начальная температура обмоток из которого проводник сделан проводник °С.

1.

R 2 = R 1 + R 1 ∙ a ∙ (T 2 - T 1)

R 2 = 6 Ом + 6 Ом ∙ 0,004041 ∙ (70 – 20) = 7,2738 Ом

Где:

R 1 – сопротивление многовитковых обмоток статора при 20°С = 6 Ом,

T 2 - температура статора низкооборотного генератора нагретого на Солнце до 70°С.

Определим ток низкооборотного генератора, на зажимах которого находится напряжение 12 Вольт при температуре окружающей среды = 20°С.

Определим ток низкооборотного генератора, на зажимах которого находится напряжение 12 Вольт при температуре нагретого на Солнце до 70°С.

Определим мощность низкооборотного генератора, на зажимах которого находится напряжение 12 Вольт при температуре окружающей среды = 20°С.

P = U ∙ I = 12 В ∙ 2 А = 24 Вт

Определим мощность низкооборотного генератора, на зажимах которого находится напряжение 12 Вольт при температуре нагретого на Солнце до 70°С.

P = U ∙ I = 12 В ∙ 1,6497566608925183535428524292667 А = 19,797079930710220242514229151192 Вт

Определим падения КПД не работающего, а просто нагретого на Солнце низкооборотного генератора при повышении температуры с 20°С до 70°С. Это допустимая температура для работы электромеханических устройств и агрегатов. Если мы даже гипотетически представим себе, что КПД низкооборотного генератора при 20°С была = 100% (чего не может быть в природе), то мы можем узнать, какой будет потеря мощности при увеличении температуры любых электрических машин. Хотя многие производители электрических машин стараются обходить эти щекотливые вопросы, чтобы не распугать своих покупателей.

24 Вт = 100%

Из этого следует, что низкооборотный генератор, который даже ещё не приступил к работе, но уже потерял 17,52% КПД и это будет только в том случае, если внутреннее сопротивление статора будет маленьким при низком напряжении на обмотках статора. При увеличении напряжения на зажимах генератора соответственно увеличивается внутреннее сопротивление генератора, что соответственно повлечёт за собой ещё больше потерь КПД генератора. При этом мы говорим только об активном сопротивлении многовитковых обмоток статора, не включая в расчёт реактивное сопротивление многовитковых обмоток статора, которое во много раз превышает активное сопротивление проводников. Рассмотрим конкретный пример, когда будет увеличено напряжение на зажимах генератора, которое повлечёт за собой увеличение внутреннего сопротивления многовитковых обмоток статора.

2. Определим сопротивление многовитковых обмоток статора при изменении температуры:

R 2 = R 1 + R 1 ∙ a ∙ (T 2 - T 1)

R 2 = 12 Ом + 12 Ом ∙ 0,004041 ∙ (70 – 20) = 29,0952 Ом

Где:

R 1 – сопротивление многовитковых обмоток статора при 20°С = 12 Ом,

R 2 – сопротивление многовитковых обмоток статора при 70°С,

А – температурный коэффициент меди = 0,004041

T 1 - температура статора низкооборотного генератора при 20°С,

T 2 - температура статора низкооборотного генератора нагретого на Солнце до 70°С.

Определим ток низкооборотного генератора, на зажимах которого находится напряжение 24 Вольта при температуре окружающей среды = 20°С.

Определим ток низкооборотного генератора, на зажимах которого находится напряжение 24 Вольта при температуре нагретого на Солнце до 70°С.

Определим мощность низкооборотного генератора, на зажимах которого находится напряжение 24 Вольта при температуре окружающей среды = 20°С.

P = U ∙ I = 24 В ∙ 2 А = 48 Вт

Определим мощность низкооборотного генератора, на зажимах которого находится напряжение 24 Вольта при температуре нагретого на Солнце до 70°С.

P = U ∙ I = 24 В ∙ 0,А = 19,7970799307102202425142291512 Вт

Определим падения КПД не работающего, а просто нагретого на Солнце низкооборотного генератора при повышении температуры с 20°С до 70°С.

48 Вт = 100%
19,797079930710220242514229151192 Вт = Х%

Это наглядный пример, когда низкооборотный генератор при увеличении напряжения на зажимах генератора и увеличения внутреннего сопротивления в два раза который, даже не приступая к работе, уже потерял 58,76% КПД. Как говорилось ранее, здесь даже не упоминалось о реактивном сопротивлении многовитковых обмоток статора, которое во много раз превышает активное сопротивление проводников. Потому что при начале работы генератора начинает возрастать активное и индуктивное сопротивление многовитковых обмоток статора, которые зависят от числа магнитных систем, количества многовитковых обмоток, способа их соединения и скорости вращения магнитной системы ротора. Поэтому если вам будут предлагать низкооборотный генератор, мощность которого при 220 Вольтах превышает 1000 Вт на 200 об/мин, то делайте выводы сами…

Необходимо особо подчеркнуть, что в зависимости от конструкции статора или ротора многовитковые обмотки генератора Белашова можно соединить таким образом, чтобы амплитуда сигнала переменного тока была пульсирующей.

Пульсирующий переменный ток, изображённый на фиг. 6, обладает следующими преимуществами:

Уменьшение частоты переменного тока,

Уменьшение нагрева многовитковых обмоток,

Уменьшение индуктивного сопротивления многовитковых обмоток.

Фиг. 6

Причём если обычный однофазный генератор переменного тока, который рассчитан на 120 оборотов в минуту, будет выдавать напряжение 12 В и иметь частоту сигнала переменного тока 100 Гц, то при соединении многовитковых обмоток выдающих пульсирующий сигнал переменного тока напряжение и ток останутся как у обычного однофазного генератора, но частота переменного пульсирующего тока составит 50 Гц.

На этих небольших примерах я наглядно показал, как одна величина может сильно влиять на КПД низкооборотного генератора, но при разработке генераторов или электрических машин их множество. Например, при расчёте низкооборотного генератора можно вытянуть одну величину до нормальной характеристики, а две другие могут заметно ухудшить его параметры. Поэтому желательно к каждой ветряной установке или мини ГЭС подходить индивидуально и конкретно изготавливать низкооборотный генератор с учётом температуры окружающей среды, где он будет работать на расчётную нагрузку с учётом удалённости расстояния от первичных преобразователей и так далее…

Потребители низкооборотных генераторов должны знать и другие тонкости этого процесса. Печально вам сообщить, но в мире нет, и не может быть низкооборотных генераторов. В данном случае вы имеете очень мощную машину, которая используется на 5-30% от заложенной мощности. Например, если раскрутить генератор МГБ-300-144-2, до 2000 об/мин, то мы получим 13833 Вт. Данный казус потребители начинают понимать, когда происходит момент покупки, где цена генератора не соответствует заявленной мощности, по отношению к другим электрическим машинам. Если к определению названия отнестись философски, то для богатых это будет низкооборотный генератор, а для всех остальных мощная электрическая машина.

Для того чтобы изготовить низкооборотный генератор изображённый на фиг.4 имеющего:

Хорошее охлаждение,

Модульную конструкцию,

Высокую степень надежности,

Надежное сопротивление изоляции,

Небольшие габариты и небольшой вес,

Генератор, который может легко регулироваться по току и напряжению,

Генератор, который может быть изготовлен от нескольких Вт, до сотен кВт,

Диэлектрический статор, генератора который не имеет потерь на гистерезис,

Диэлектрический статор, генератора который не имеет потерь на вихревые токи,

Генератор, который может автоматически определять напряжение поступающего сигнала,

Генератор, диэлектрический статор которого не имеет потерь на реактивное сопротивление якоря,

Генератор, имеющий систему слежения и регулирования, которая способна автоматически изменять параметры машины,

Электрическую машину постоянного тока, которая способна работать от одного или нескольких независимых источников различного напряжения и тока, а в южных странах от энергии солнечных батарей.

При изготовлении низкооборотного генератора необходимо добиться того чтобы ветряная установка или мини ГЭС должна сама в процессе работы могла менять конструктивную величину генератора коммутируя многовитковые обмотки статора или отдельных модулей таким образом чтобы получить от установки максимальную мощность вырабатываемого сигнала.

Чтобы изготовить качественный низкооборотный генератор необходимо от заказчика получить техническое задание на его разработку, которое поможет определить для каких целей будет использован данный генератор. Например, нам нужен низкооборотный генератор для ветроэнергетической установки максимальной мощностью 800 Вт при 400 об/мин, а для этого необходимо знать.

Примерное техническое задание на разработку низкооборотного генератора МГБ-300-144-2.

1. Назначение. Низкооборотный генератор предназначен для ветроэнергетической установки в отдельном индивидуальном доме или отдаленном поселении, который расположен вдали от центральной электросети.

2. Область применения. Обеспечение местного электроосвещения, для питания электробытовой техники, радиостанций, телевизоров, радиоприемников, холодильников и других маломощных бытовых потребителей до (500 - 800) Вт.

3. Технические характеристики и требования к генератору.

3.1. Мощность генератора при 400 об/мин - 800 Вт.

3.2. Мощность генератора при 300 об/мин - 500 Вт.

3.7. Ток короткого замыкания при 50 об/мин - 1,46 А.

3.8. Частота переменного тока при 500 об/мин - 100 Гц.

3.9. Частота переменного тока при 300 об/мин - 60 Гц.

3.11. Число фаз генератора - одна.

3.12. Возбуждение - магнитоэлектрическое. Материал магнитов Нм30Ди5к8рт с остаточной магнитной индукцией Br - 1,25 Тл.

3.13. Температура окружающей среды от - 40°С до + 60°С.

3.14. Начальный момент вращения винта не более - 0,02 кг∙м.

3.15. Габаритные размеры генератора:

3.16. Наружный диаметр корпуса - 320 мм.

3.17. Длина корпуса без вала - 130 мм.

3.18. Длина генератора с валом - 220 мм.

3.19. Масса генератора не более (уточняется).

3.20. Отвод напряжения из генератора через разъем (тип разъема и место его установки уточняется).

3.21. Система автоматического слежения и регулирования за изменениями конструктивной величины генератора (тип системы уточняется).

3.22. Конструктивное исполнение генератора:

3.23. Генератор сборно-разборный. Состоит генератор из корпуса, в котором размещены четыре идентичных съёмных модуля и один съёмный вал.

3.24. Конструкция идентичных модулей допускает использование их, как для первой, так и для второй фазы.

3.25. Корпус генератора выполнен в закрытом исполнении.

3.26. Количество многовитковых катушек статора - 36 шт.

3.27. Максимальное напряжение на одной катушке статора при 600 об/мин. - 13 В.

3.28. Естественный способ охлаждения - IC 0041 ГОСТ 20459-87.

3.29. Исполнение морское - тропическое, по степени защиты - IR 44 ГОСТ 17494 - 87.

3.30. Изоляция проводящих ток частей генератора - класса "В".

3.31. Режим работы генератора - длительный (S1).

3.32. По всем требованиям генератор должен соответствовать ГОСТ 183 - 74.

3.33. При расчете и конструировании генератора все технические характеристики и параметры машины могут отличаться от технического задания на 5 - 10%.

3.34. Отдельные пункты ТЗ могут уточняться и дополняться при взаимном соглашении сторон.

Однако для того чтобы составить техническое задание на разработку низкооборотного генератора необходимо прежде всего выбрать тип ветряного двигателя, сделать его предварительный расчёт и определить:

Тип ветряного двигателя,

Диаметр колеса ветряного двигателя,

Среднюю годовую скорость воздушного потока,

На какую мощность рассчитан ветряной двигатель,

Коэффициент использования энергии ветра ветряным двигателем,

Вращающие моменты различных типов ветряных двигателей и так далее…

Для того чтобы использовать воздушный поток ветряного двигателя в полной мере необходимо исходить из того что материальная точка основания винта каждой лопасти, в зависимости от длины окружности винтов ветряного двигателя должна проходить расстояние равное скорости ветряного потока.

Например, вычислим количество оборотов низкооборотного генератора при использовании ветряного двигателя имеющего:

Диаметр винта 2 м,

Скорость воздушного потока = 6 м/с.

Из таблицы, размещённой в Патенте Российской Федерации определим максимальную мощность воздушного потока при 6 м/с, которая = 836,54 Вт.

Фиг. 7

Определим длину окружности вокруг винтов ветряного двигателя, которая вычисляется по формуле:

L = П ∙ D
L = 2 м ∙ 3,1415926535897932384626433832795 = 6,283185307179586476925286766559 м

Где:

L – длина окружности,

D – диаметр круга = 2 м,

П – отношение длины окружности к диметру круга = 3,1415926535897932384626433832795.

Определим время, за которое проходит каждая лопасть ветряного двигателя вокруг своей оси при скорости ветра 6 м/с.

6 м/с: 6,283185307179586476925286766559 м = 0,с

Определим максимальное количество оборотов ветряного двигателя за одну минуту, при скорости ветра 6 м/с зная, что 1 мин содержит 60 сек.

0,954929658551372014613302580235 об/с = 1 сек
Х об = 60 сек

Определим мощность ветряной установки, если при помощи низкооборотного генератора установить нагрузку на лопасти ветряного двигателя 30% от максимальной мощности воздушного потока.

836,54 Вт = 100%
Х Вт = 30%

Определим количество оборотов низкооборотного генератора, которое изменится при нагрузке ветряного двигателя на 30% от максимальной мощности ветряного потока.

836,54 Вт = 57,295779513082320876798154814 об/мин
250,962 Вт = Х об/мин

Для того чтобы на скорости 17,18873 об/мин получить мощность 250,962 Вт необходимо установить в низкооборотном генераторе Белашова необходимое количество модулей.

Из технических характеристик видно, что при 50 об/мин один модуль низкооборотного генератора выдаёт 17 Вт мощности.

Определим мощность низкооборотного генератора при 17,188733853924696263038846444 об/мин.

50 об/мин = 17 Вт
17,188733853924696263038846 об/мин = Х Вт

Определим количество модулей, которые при 17,18873385 об/мин могут обеспечить мощность от низкооборотного генератора = 17 Вт.

5,84416951 Вт = 1 модуль
17 Вт = Х модулей

Из предварительных расчётов видно, что для выработки мощности 17 Вт при 17,18873385 об/мин нам необходимо 3 модуля.

В данном примере предварительного расчёта ветряного двигателя не указан:

Тип ветряного двигателя,

Количество лопастей ветряного двигателя,

Масса лопастей ветряного двигателя и их форма,

Коэффициент использования винта на заявленной скорости вращения ветряного колеса,

Потери ветряного двигателя и многое другое…

Полный расчёт ветряных двигателей смотрите в Патенте Российской Федерации

В настоящее время нет производителей, выпускающих своими силами полный комплект оборудования к ветряным установкам или мини ГЭС, которые будут привязаны к реальной местности и конкретным условиям. Эти компании покупают готовые комплектующие у разных производителей, комплектуют готовый продукт и продают потребителям. Даже если ветряной двигатель будет очень хорошим, но он может не подходить для конкретной местности или данных климатических условий. С низкооборотными генераторами Белашова дело обстоит лучше, так как из отдельных модулей можно комплектовать любые параметры генератора на любое напряжение, ток и количество оборотов, где в процессе работы можно изменять конструктивную величину генератора. В производстве они гораздо экономичнее, так как из набора одинаковых модулей можно предложить потребителям различные параметры низкооборотного генератора.

После этого с учётом полученного технического задания необходимо произвести тщательный расчёт и разработку каждой детали низкооборотного генератора:

Статор с многовитковыми обмотками (с учётом изменения температуры многовитковых обмоток),

Количество многовитковых обмоток статора и электрическую схему их соединения,

Форму многовитковых обмоток статора и способ отвода от них тепла,

Форму магнитов и магнитопроводов магнитной системы ротора,

Устройство сведения магнитных систем ротора,

Корпус генератора,

Вал генератора,

К большому сожалению, у меня не было единомышленников и кроме изобретений все расчёты, разработки, конструирование, изготовление генераторов и других электрических машин мне приходилось делать самому.

По моему мнению, вся малая энергетика развивается не в том направлении. Основным стратегическим заблуждением является, то, что любые ветряные установки или мини ГЭС не должны на месте производить готовый продукт, а именно то напряжение и ту мощность, которую заявляет потребитель. Сама альтернативная энергетика должна на первичных пунктах получать как можно больше энергии любого типа и далее без лишних потерь передаваться потребителю, где электрический сигнал должен быть на месте преобразован в готовый продукт, который будет использован потребителем. Сейчас на месте получают готовый продукт и с большими потерями гонят его к потребителю.

Как видим из предыдущих примеров это не правильный подход к разработке низкооборотных генераторов, ветряных установок и мини ГЭС. Для того чтобы грамотно поставить ветряную установку или мини ГЭС необходимо начать с тщательного обследования места установки, а далее сделать капитальный расчёт всех узлов и комплектующих, тогда и получится, то о чём вы думали.

В заключении можно сказать, что малая ветроэнергетика и малая гидроэнергетика во многом дискредитирована в глазах потребителей на фоне не добросовестных производителей и слабо разбирающихся в технике менеджеров. Многие производители обещают большие прибыли, которые могут исходить от альтернативной энергетики, но забывают сказать о тех проблемах, которые могут ожидать потребителей этих генерирующих установок.


Видеофильм демонстрирующий работу кассетно-модульного низкооборотного генератора МГБ-205-72-1.

В этом видеофильме в качестве нагрузки использована лампа накаливания мощностью 40 Ватт при напряжении 12 Вольт.

Кассетно-модульный низкооборотного генератор МГБ-205-72-1 был продемонстрирован на шестой международной выставке электротехнических изделий и новых технологий «Электро - 96» проходившей с 2 по 6 июля 1996 года в «Экспоцентре» Российской Федерации города Москвы.

Необходимо особо подчеркнуть, что после истечения определённого количества времени или длительной непрерывной работы магнитная система низкооборотного генератора, состоящая из постоянных магнитов, начинает ослабевать и крошиться. Если при вращении 45 об/мин кассетно-модульный низкооборотный генератор Белашова МГБ-205-72-1 в 1996 году показывал яркое горение лампы накаливания мощностью 60 Ватт при напряжении 12 Вольт, то в 2019 году он с трудом осиливает лампочку 40 Вт. Некоторые производители магнитов давали гарантии на выпускаемые ими постоянные магниты 20 лет, что практически подтверждает их обязательства.


Видеофильм демонстрирующий работу одного модуля низкооборотного генератора Белашова МГБ-300-84-2.


Видеофильм демонстрирующий работу одного модуля низкооборотного генератора Белашова МГБ-340-84-1.

В этом видеофильме в качестве нагрузки использована лампа накаливания мощностью 60 Ватт при напряжении 12 Вольт.


Видеофильм демонстрирующий зарядку аккумулятора от низкооборотного генератора Белашова МГБ-340-84.

В качестве нагрузки использован 12 Вольтовый аккумулятор. Низкооборотный генератор Белашова МГБ-340-84-1 при 30-40 об/мин даёт зарядный ток не менее одного Ампера.


Видеофильм о механизме образования магнита и магнитной системы из атомов магнитного материала.

Видеофильм посвящён механизму образования магнита и магнитной системы из атомов магнитного материала.


Видеофильм о первой в мире дисковой электрической машине Белашова МДЭМБ-01.

Первая в мире дисковая электрическая машина Белашова МДЭМБ-01 у которой одна или множество многовитковых обмоток дискового диэлектрического ротора, не меняя направление тока в проводниках, проходят сквозь один или множество постоянных подковообразных магнитов. Магниты полюсов системы возбуждения статора, которые расположены в одном ряду, могут иметь разное направление движения магнитных потоков. Дисковая диэлектрическая машина Белашова МДЭМБ-01 была показана на первом канале центрального телевидения в 1993 году.



erkas.ru - Обустройство лодки. Резиновые и пластиковые. Моторы для лодок