Автоматические системы вентиляции и кондиционирования. Автоматика для систем вентиляции и кондиционирования

Среди направлений развития технического прогресса автоматизация выделяется особо. Она избавляет человека от выполнения рутинных, а зачастую и опасных процессов, существенно уменьшает трудоемкость операций на производстве или в быту и позволяет оптимизировать все сферы жизни.

Автоматизировать можно практически любые функции техники и области ‒ в том числе и вентиляцию. Это актуально, главным образом, для крупных комплексов ‒ промышленно-производственных, складских, торговых ‒ но сегодня все чаще применяется и при организации систем жизнеобеспечения в домах. Вентиляция ‒ это сложноорганизованная система, в которой используется множество видов чувствительного инженерного оборудования, и ее автоматизация представляет собой небанальную и ответственную задачу. Однако преимуществ у нее много, и их стоит использовать.

Правильно организованная автоматизация вентиляционных систем ‒ это комплекс высокой степени рациональности, избавляющий пользователей от ручного контролирования индикаторов в среде и их изменения. В бизнес-пространствах, местах большого скопления людей, спортивных, производственных комплексах актуальна полная автоматизация, включающая вентсистемы:

  • модульные;
  • пожарные.

Качественные составляющие и умелая организация автоматических систем позволят сохранять безопасность людей в здании, а также:

  • обеспечивать работу в соответствии с установленными алгоритмами;
  • добиваться соответствия показателей установленным значениям;
  • останавливать системы при аварийных ситуациях;
  • контролировать состояние и работоспособность всех элементов;
  • визуализировать параметры, осуществлять дистанционное управление вентиляцией и так далее.

Преимущества организации автоматизированных вентсистем

Считать, что автоматика ‒ лишняя и затратная опция, нельзя. Она позволяет существенно «разгрузить» человека на производстве и в быту, повысить качество жизни и работы, обеспечить уровень безопасности гораздо более высокий, чем при ручном управлении. Среди основных достоинств, которыми отличается автоматика вентиляционного оборудования, стоит упомянуть:

  • снижение затрат на электричество, энергоносители, эксплуатацию инженерии, персонал ‒ практика показывает, что при автоматизировании (включение/отключение групп оборудования, например) можно достичь 10-20-процентной экономии тепло- и хладопотребления;
  • эффективная организация воздухообмена в помещениях ‒ при помощи автоматики можно задавать нужные параметры очистки, температур, интенсивности потока, при этом обеспечивается простое и быстрое достижение благоприятности микроклимата;
  • надежная защита в аварийных ситуациях ‒ комплексная система, включающая устройства оповещения, пожаротушения, нейтрализации задымлений, позволит быстро отреагировать на ЧП;
  • полный контроль (в том числе дистанционный) и управляемость системы ‒ при помощи автоматизированных установок можно регулировать работу вентиляторов, отслеживать, насколько загрязнены фильтры, нет ли перегрева или переохлаждения элементов и так далее.

Автоматика позволит определить, не нарушились ли выставленные частоты вращения вентиляторов. Она поддерживает заданные параметры, условия климата и управляет всеми устройствами. То, насколько безопасна, надежна и долговечна система, зависит от качества ее сборки и составляющих.

Конструктивные особенности автоматизированных венткомплексов

Автоматика для вентиляционных систем регулируется существующими положениями ‒ это ТУ, СниПы и прочие. Она представляет собой совокупность элементов и алгоритмов, обеспечивающих функциональное соблюдение выставленных параметров.

На что обратить внимание при проектировании

  • Принципиальные схемы автоматизирования в инженерные модели закладываются еще на проектной стадии. Тогда же выбирают принцип работы и уровень «замены» человека электроникой.
  • Управление автоматикой организуется при помощи специальных шкафов, в которые заводят регуляторы и контрольные элементы. Они должны располагаться в удобном и доступном месте, чтобы обслуживание можно было проводить без помех.
  • Рекомендуется в любой автоматизированной схеме устанавливать контрольные приборы ‒ в приточно-вытяжных венткомплексах, кондиционирующей системе. Выбор модели зависит от назначения объекта и экономико-технической целесообразности.

Какое потребуется оборудование

К базовому комплекту оборудования, которое входит в автоматизированно-вентиляционные комплексы, обычно относят:

  • Датчики ‒ элементы, снимающие показания с подконтрольного объекта и предоставляющие пользователю и управляющей системе информацию о его состоянии. Они поддерживают обратную связь, обеспечивая сведениями об уровне давления и влажности, температурах, и подбираются в зависимости от нужной точности, требований и диапазона.
  • Регуляторы/контроллеры ‒ элементы, координирующие работу исполняющих устройств и управляющие ими на базе данных, предоставляемых датчиками.
  • Исполняющие устройства ‒ оборудование механического, электронного, гидравлического типов, которое выполняет непосредственные функции. Это электроприводы пожарно-воздушных клапанных деталей и теплообменников, реле, следящие за перепадами давления, насосы.

Характеристика составляющих автоматизированной установки

Все детали и механизмы, из которых состоит автоматика вентиляционных установок, имеют свои особенности и делятся на типы.

Так, например, датчики могут относиться к комнатным или наружным устройствам, они монтируются накладкой на трубопроводы, в каналах. Среди них выделяются:

  • температурные ‒ могут функционально выставлять лимиты, устанавливаться в комнатах или снаружи;
  • влажности ‒ внутренние и наружные, соединяются с приборами для измерения относительных параметров, устанавливаются в точках, где температура и скорость движения воздуха неизменны, далеко от отопительных конструкций и прямых лучей солнца;
  • давления ‒ релейного и аналогового типов, могут измерять абсолютные значения или разности (на две точки);
  • потока ‒ для выяснения, с какой скоростью движется газ/жидкость в трубах или воздуховодах.

Приборы контроля выносятся на автоматизационные щиты, где объединена совокупность элементов регулирования и исполнения. Их производят при помощи сложного оборудования, непременно с сертификацией, глобальные и известные бренды: Phoenix Contact, Siemens, Schneider Electric, Legrand, General Electric и множество прочих. При их создании важно, чтобы устройства обеспечивали безопасность, а также удобно и эргономично эксплуатировались.

Полную информацию об автоматизации вентиляционной системы в каждом конкретном случае можно получить у специалистов «ЭкоЭнергоВент».

Или отправьте быструю заявку

Система автоматизации для вентиляции играет роль управляющего и контролирующего центра, при помощи которого вентиляционное оборудование запускается, останавливается, выводится на необходимый пользователю режим работы по температуре и/или влажности и другим возможным критериям. Помимо управляющих функций важное значение имеют функции контрольные, позволяющие предотвратить обмерзание водяных теплообменников, защитить циркуляционный насос гидрообвязки, обеспечивающие своевременное информирование о загрязении фильтров, о перегреве электронагревателя или о нештатно остановившемся вентиляторе. Таким образом при помощи системы автоматизации достигается эффект обеспечения в обслуживаемых впомещениях необходимой циркуляции свежего воздуха желаемой температуры и влажности и защиты климатообразующего оборудования от аварийных ситуаций — что позволяет ему долго работать и выполнять свои функции. Конечно, работоспобность системы в течение продолжительного периода времени возможна при грамотном обслуживании опытными специалистами службы эксплуатации.

Основные функции автоматики для вентиляции

  • поддержание требуемой температуры приточного воздуха и температуры в помещении;
  • дистанционное включение/выключение системы вентиляции;
  • управление работой и производительностью вентиляторов;
  • контроль состояния теплообменных агрегатов, таких как термостаты перегрева электронагревателей, защита водяного калорифера от замораживания по температуре воздуха и обратной воды, и т. д;
  • контроль уровня загрязнения фильтров;
  • автоматический переход в режим зима/лето;
  • контроль и управление роторными и пластинчатыми рекуператорами, тепловыми насосами, увлажнителями и осушителями;
  • управление циркуляционным насосом водяного калорифера с учетом показаний датчиков наружной температуры и давления теплоносителя с защитой от сухого хода;
  • управление приводом заслонки наружного воздуха;
  • контроль работы приточного вентилятора;
  • отключение вентиляционной установки по сигналу пожарной сигнализации

Производители автоматики для вентиляции стремятся сделать свою продукцию не только более надёжной и функциональной, но и близкой к конечному пользователю. Ещё недавно наличие пульта управления было необязательной опцией, а сейчас это стало общепринятой нормой. Более того, ряд компаний предлагает своим потребителям диспетчеризацию (подключение к «умному дому»), управление вентиляцией через интернет, а также возможность управления вентиляцией с помощью мобильных устройств через специальные приложения по беспроводным стандартам (Wi-Fi, Bluetooth). Таким образом, автоматика вентиляции перестает быть сложным промышленным устройством и становится современной, легкой в обращении бытовой техникой.

Оборудование для системы автоматического управления вентиляцией

Выпускается ряд типов приборов, устройств и датчиков для создания автоматики управления вентиляцией. Для управления отдельным процессом, предназначены механизмы контроля. Но устройства не только контролируют весь процесс, но и управляют эксплуатацией одного участка схемы.

Поэтому, в состав автоматики входят десятки различных реле, датчиков и других приборов.

Важно. Как правило, для обслуживания вентиляции используются электронные приборы. Но для контроля над температурой нагрева или охлаждения воздуха устанавливают механический узел обвязки.

В состав автоматического устройства управления системой вентиляции, обязательно входят следующие приборы:

  • регулятор температуры воздушных масс;
  • прибор регулировки величины оборотов вентилятора;
  • в узле обвязки устанавливается датчик нагрева воды и воздуха;
  • привод управления запорным клапаном.

Но данные приборы производят локальное регулирование работы системы или делают замеры. Контроль и определение общего уровня безопасности, всего цикла работы вентиляционной системы, осуществляется с помощью шкафа центрального управления устройства вентиляции.

Сложность системы можно понять, ознакомившись с полным списком оборудования данного устройства. Количество определенных датчиков или реле может быть значительным, а некоторые приборы представлены в единственном числе. Рассмотрим устройство некоторых щитов автоматического управления.

Устройство вентиляционной щитовой для системы с установкой электрического калорифера

Для обустройства данной щитовой используются следующие составляющие автоматики:

  • регулятор установки температурного режима (одним из лучших вариантов будет использование шведских деталей компании Regin);
  • группа управления вентиляторами приточной, вытяжной системы. Лучшим вариантом является установка приборов, осуществляющих ступенчатую или плавную регулировку;
  • индикаторы использования вентиляционной установки;
  • группа приборов для поддержания номинальной температуры в помещении;
  • выключение подачи электричества на калорифер, при отключении приточных вентиляторов;
  • группа приборов для отключения, индикации загрязнения воздушных фильтров;
  • устройство защитного отключения при перегреве системы;
  • система автоматического выключения при пиковых токах короткого замыкания, значительных перегрузках.

Щитовая для обслуживания автоматики с водяными калориферами

Автоматика приточной вентиляции призвана обеспечивать безопасность при эксплуатации приборов подогрева воздуха, вентиляции помещения. Основной прибор щита - это контроллер AQUA шведского производства. Остальные составляющие устанавливают для решения следующих вопросов:

  • производят управление вентиляторными устройствами;
  • поддерживают заданную температуру воздушных масс;
  • переключают режимы эксплуатации;
  • управляют приводами клапанов с возвратными пружинами, обеспечивающими закрытие воздухозаборными клапанами, в случае выключения вентиляторных установок, коротком замыкании фазы на корпус;
  • управляют работой насоса циркуляции воды в калорифере, устанавливаемом в узле обвязки;
  • осуществляют контролирование за температурой воды в обратной магистрали при разных режимах работы, при выключении калорифера;
  • выключают подачу энергии при загрязнении воздушного фильтра.

Автоматизация вентиляции позволяет решать сложные задачи в любых условиях и при различных режимах эксплуатации оборудования. Каждая схема вентилирования воздуха монтируется с автоматической системой управления процессом.

В заключение, отметим основные моменты, на которые следует обращать пристальное внимание при покупке приборов оснащения щита автоматического управления устройством вентилирования зданий.

Основной критерий выбора - это надежность комплектующих. Обязательно попросите у менеджера сертификат качества данных приборов, а также гарантии компании изготовителя щитов вентиляции и каждой отдельной детали. Обращайте внимание на наличие производственной базы для выполнения ремонта, гарантийного сервисного обслуживания вентиляционного оборудования, схемы автоматического управления процессом.

Каждый прибор должен иметь паспорт, инструкцию, схему подключения. Сегодня на рынке вентиляционного оборудования, различные производители предлагают разнообразный ассортимент комплектующих и схем устройств щитов вентиляции. Сделав правильный выбор, качественно выполнив монтаж автоматических шкафов, вы получаете надежное, безопасное оборудование, на достаточно долгое время.

Диспетчеризация систем вентиляции и кондиционирования. Автоматизация вентиляции.

Специалисты Группы компаний "ЕвроХолод" имеют богатый опыт по проектированию, установке и запуску систем диспетчеризации вентиляции и кондиционирования в зданиях различного назначения.

Система диспетчеризации и мониторинга систем вентиляции и кондиционирования осуществляет контроль и управление на основе сигналов, поступающих от датчиков влажности, температуры, содержания углекислого газа и пыли в воздухе.

Зачастую подобные устройства монтируются в помещениях и воздуховодах. В совокупности представленные датчики позволяют отслеживать ресурс, а также аварийные режимы работы оборудования.

Основные функции диспетчеризации систем вентиляции и кондиционирования воздуха:

  • Индикация параметров отдельных узлов подсистемы с возможностью их настройки
  • Извещение диспетчера в случае отказа отдельных устройств и агрегатов, а также при возникновении внештатных ситуаций
  • Оперативный перевод систем в аварийные режимы работы в предопределенных ситуациях, например, выключение агрегатов общеобменной вытяжной и приточной вентиляции
  • Запуск аварийной вентиляции при пожаре для удаления дыма (осуществляется в случае срабатывания пожарной сигнализации)
  • Поддержание параметров воздуха в соответствии санитарным нормам
  • Регулирование температуры и влажности воздуха, проникающего в систему воздуховодов приточной вентиляции
  • Перевод систем как приточной, так и вытяжной вентиляции в режим энергосбережения в часы пониженных нагрузок
  • Отработка заданных алгоритмов группового включения/выключения вентиляционно-кондиционирующих установок.

Монтаж

Журнал «Мир климата» продолжает публикацию фрагментов новой учебной программы ДПО Учебно-консультационного центра «УНИВЕРСИТЕТ КЛИМАТА» под названием «Автоматизация систем отопления, вентиляции и кондиционирования воздуха».

Ранее мы подробно описали работу с приложениями современной среды разработки CAREL c.Suite. Теперь расскажем о разработке пользовательских интерфейсов диспетчеризации в среде c.Web

Разработка пользовательских интерфейсов диспетчеризации в среде c.Web

Средства диспетчеризации

Номенклатура продукции компании CAREL включает различные средства диспетчеризации как локального, так и глобального уровня.

Свободнопрограммируемые контроллеры семейства c.pCO

Контроллеры семейства c.pCO, оснащенные встроенным портом Ethernet, предоставляют возможность непосредственной диспетчеризации через Интернет за счет встроенного веб-сервера.

Пользовательский интерфейс сервера может быть как стандартным, предоставляемым компанией CAREL бесплатно, так и разработанным в соответствии с требованиями конкретного заказчика.

Стандартного пользовательского интерфейса достаточно для мониторинга работы установки, управления ею и анализа поведения оборудования во времени за счет встроенной функции ведения журнала (лога) значений выбранных параметров с последующим просмотром их в виде графиков.




Такое решение оптимально для объектов с небольшим количеством оборудования, где бюджет не позволяет установить выделенный сервер системы диспетчеризации.


Сервер диспетчеризации уровня объекта BOSS

Все контроллеры семейства c.pCO, независимо от модификации, имеют как минимум один встроенный порт RS485, который может быть использован для интеграции контроллера в шину диспетчеризации по протоколам ModBus или BACnet.

Сбор, хранение, отображение информации от полевых контроллеров и уведомление персонала объекта о требующих внимания ситуациях должны осуществляться сервером системы диспетчеризации BOSS .

Особенностями и достоинствами сервера системы диспетчеризации BOSS являются:

  • доступ через любой веб-браузер с ПК, планшета или смартфона;
  • встроенная точка доступа Wi-Fi позволяет удаленно работать с BOSS как с мобильного устройства так с персонального компьютера;
  • при необходимости возможно подключение монитора через разъемы Display Port или VGA , а также клавиатуры и мыши через порты USB;
  • автоматическое масштабирование страниц сервера под разрешение экрана устройства, с которого происходит доступ;
  • интегрированная поддержка протоколов Modbus (Master и Slave) и BACnet (Client и Server) по шинам MS/TP (RS485) и TCP/IP;
  • максимально упрощенная процедура развертывания системы диспетчеризации на основе BOSS за счет визуализации данных с помощью шаблонных страниц.


Решение с использованием BOSS ориентировано на объекты, где необходима интеграция в единый интерфейс диспетчеризации десятков - сотен контроллеров как производства CAREL , так и сторонних, поддерживающих наиболее распространенные в настоящее время коммуникационные протоколы ModBus и BACnet.

Облачный сервис диспетчеризации tERA



Облачный сервис диспетчеризации tERA, использующий возможности Интернета для взаимодействия с полевыми контроллерами, расположенными в различных местах, - универсальное решение для объектов любого масштаба, а также для сетей объектов.

Достоинства tERA:

  • отсутствие необходимости размещения какого-либо серверного оборудования на местах;
  • доступ к интернет-порталу tERA возможен с любого устройства, подключенного в глобальной сети;
  • не требуется специальная настройка сетевого оборудования на объекте, где установлены системы автоматизации, которые предполагается контролировать;
  • детализация информации по оборудованию и возможности управления зависят от типа пользователя, устанавливаемого локальным администратором;
  • автоматическое создание отчетов как по расписанию, так и при наступлении определенных событий, требующих вмешательства обслуживающего персонала;
  • поддержка обновления программного обеспечения полевых контроллеров;
  • встроенный инструментарий анализа поведения оборудования путем сравнения параметров во времени и между различными объектами;
  • пользовательский интерфейс может быть как минималистичным, состоящим только из таблиц и графиков, так и оформленным с учетом пожеланий конкретного заказчика.



Применение сервиса tERA особенно актуально для сетей объектов малого и среднего масштаба, где нецелесообразно применение физических серверов диспетчеризации из-за малого количества оборудования на каждом из объектов, а количество самих объектов велико, что делает затруднительным прямое подключение к каждому из них.

Также сервис tERA является оптимальной платформой для сервисных организаций, предлагающих своим клиентам услуги периодического сервисного обслуживания и ремонта оборудования.


Средства разработки пользовательских интерфейсов

Все инструменты диспетчеризации предполагают возможность создания пользовательского интерфейса, оформленного в соответствии с требованиями заказчика.

Важной составляющей пользовательского интерфейса оператора является графическое оформление, от удобства, наглядности и эргономичности которого зависит эффективность работы диспетчера.

Кроме того, к современным средствам визуализации информации в системах BMS предъявляются требования по обеспечению кроссплатформенности и поддержки мобильных устройств.

Всем перечисленным требованиям соответствует среда разработки пользовательских интерфейсов CAREL c.Web, имеющая следующие основные характеристики:

поддержка современных кроссплатформенных технологий визуализации - используется стандартный код HTML и SVG графика, поддерживаемая всеми современными платформами - в отличие от FLASH и ряда других технологий;

процесс разработки максимально оптимизирован для использования библиотечных элементов с минимально необходимым объемом программирования. В то же время опытному разработчику предоставляются широкие возможности настройки;

предусмотрена поддержка мобильных устройств с точки зрения удобства для оператора при работе с экранами малого размера;

защита интеллектуальной собственности - учтены интересы разработчиков - в целевое устройство загружается откомпилированный HTML-код, в то время как исходный проект остается у автора;

c.Web является единым унифицированным инструментом разработки пользовательских интерфейсов для средств диспетчеризации различного уровня производства CAREL вплоть до возможности переноса проектов из одной системы в другую с сохранением функциональных возможностей и минимальными доработками.

c.Web

Запуск c.Web и создание проекта



Для запуска c.Web следует выбрать соответствующий ярлык в панели задач и запустить его от имени администратора:

После этого меню приобретет вид:



Следует выбрать Project Console, что приведет к появлению соответствующего окна:



Если предполагается работать с уже выбранным проектом, то следует нажать кнопку Builder. Если требуется изменить текущий проект, следует нажать красную кнопку остановки сервера.




В открывшемся окне следует указать имя нового проекта и папку, в которой он будет находиться:



Следует отметить, что если в указанной папке окажутся файлы ранее созданного проекта, то при запуске редактора они будут открыты как новый проект. Таким путем можно разрабатывать новые проекты на основе ранее созданных.




а затем - кнопку Builder для запуска собственно редактора c.Web.

Если сервер ранее не был сконфигурирован, появится окно параметров, в котором необходимо назначить имя сервера, его адрес и тип.



В нашем случае тип должен быть Carel, а имя и IP-адрес целевого контроллера мы указываем, исходя из собственных предпочтений.



На закладке Advanced необходимо указать пути к папкам, содержащим таблицы параметров контроллера, доступных для диспетчеризации, и к папкам, куда редактор поместит готовый проект.



При наличии связи с контроллером по локальной сети удобно загружать готовый проект непосредственно в котроллер с помощью встроенного FTP-сервера, поэтому в качестве целевых папок указываем соответствующие папки в контроллере.



Для заполнения поля Config Source необходимо создать файл конфигурации переменных контроллера, что можно сделать, только имея исходный проект.

Для этого следует вернуться к проекту приложения контроллера и открыть его в среде разработки c.Suite, в программе c.design.




Устанавливаем галочку Enable c.Web - это необходимо для корректной работы проекта пользовательского интерфейса после загрузки в контроллер:



Экспортируем переменные проекта в формате, соответствующем редактору c.Web:



Откроется окно, в котором следует указать папку, куда мы намерены сохранить конфигурационный файл.



После выполнения указанных действий появится сообщение вида:



Поскольку мы внесли изменения в проект приложения контроллера, его необходимо перезагрузить:


Теперь мы можем вернуться к настройке редактора c.Web, указав в поле Config Source путь к папке, куда был сохранен файл конфигурации переменных из c.design:



В итоге указанное окно примет вид:



Установка галочки Cleanup dataroot приведет к очистке папки, куда в контроллер будут загружаться файлы проекта, поэтому, если в процессе работы туда будут помещаться какие-либо дополнительные файлы, не входящие в проект c.Web, они будут удалены. В ряде случаев это нежелательно, поэтому данную галочку лучше не устанавливать.



На вкладке Layout выберем подходящий формат страниц с учетом разрешения экрана, на котором, вероятнее всего, будет отображаться создаваемый пользовательский интерфейс:



После нажатия OK откроется основное окно редактора:


Получение точек данных и привязка к объектам

Первое, что необходимо сделать - загрузить информацию о точках данных, которые мы планируем использовать в нашем проекте. Для этого следует щелкнуть правой кнопкой мыши по имени проекта и выбрать Acquire Datapoints:



При успешном выполнении процедуры появится окно вида:



Прочитанные переменные можно увидеть в разделе OBJECTS дерева проекта:


Собственно пользовательский интерфейс начнем создавать на странице Main. Перенесем объект Circular Meter из библиотеки на страницу проекта:



Свойства выбранного объекта отображаются в соответствующем окне редактора. Для привязки переменной к объекту для отображения значения переменной необходимо использовать свойство Base.



Привяжем к имеющемуся объекту переменную, содержащую значение текущей температуры:



И поменяем ряд других параметров, определяющих внешний вид и поведение объекта:


Загрузка в контроллер

Чтобы убедиться, что механизм импорта переменных сработал правильно, загрузим полученный проект с одним объектом в целевой контроллер.

Для этого необходимо щелкнуть правой кнопкой по имени проекта и выбрать Distribute:



По ее окончании, открыв браузер и указав IP-адрес контроллера, мы сможем убедиться, что загрузка прошла успешно и данные корректно отображаются в веб-интерфейсе контроллера:



Для изменения заголовков страниц веб-интерфейса следует модифицировать соответствующую строку в коде объекта index.htm, находящегося в разделе Library - ATVISE - Resources:



Добавим на нашу страницу объект, позволяющий не только просматривать, но и изменять значения переменных в контроллере.

Таким объектом может быть, например, Read/Write Variable - он особенно удобен для использования на сенсорных экранах, так как содержит крупные кнопки уменьшения и увеличения значения, а также движок регулятора.

Поместим указанный объект на страницу, привяжем к переменной уставки температуры и модифицируем вид объекта в соответствии с своими предпочтениями:



После загрузки обновленного проекта в контроллер появится возможность изменять заданное значение через веб-интерфейс:



Добавим переключатель для изменения состояния дискретной переменной и привяжем его к включению и выключению установки:


Динамическая индикация тревоги

Добавим индикацию тревоги. Для этого нарисуем круг с помощью инструмента Add circle.



Для ряда графических объектов в c.Web имеется набор готовых шаблонов, в частности это касается кругов: выделив круг и выбрав в меню Templates, можно применить формат шаблона к выбранному объекту.



Сделаем круг красным с градиентной заливкой.



Для изменения состояния индикатора тревоги в зависимости от ситуации воспользуемся механизмом Add Simple Dynamic, встроенным в c.Web.



В пункте EVENT укажем значение переменной состояния тревоги, а в пункте ACTION - сопоставим состоянию наличия тревоги мигание выбранного объекта и состояние его невидимости при отсутствии тревоги.


Фактически механизм Simple Dynamics представляет собой мастер, который простыми визуальными средствами позволяет создавать определенные последовательности действий, требующих программирования. Simple Dynamics позволяет упростить этот процесс, однако на выходе возникает скрипт, который может быть использован как основа и в дальнейшем вручную модифицирован разработчиком.

Для отображения и редактирования скрипта следует нажать кнопку Script на панели c.Web:



Полученный скрипт можно проанализировать и дополнить.



Для более развернутого уведомления оператора о наличии тревоги к визуальному уведомлению - мигающему красному индикатору целесообразно добавить акустический сигнал.

Для этого добавим в папку Resources файл, содержащий сигнал тревоги:



Кроме того, добавим еще один индикатор - зеленый, который должен светиться, когда тревога отсутствует:



Размеры зеленого индикатора зададим такими же, как и красного, а для точного расположения обоих индикаторов друг над другом воспользуемся инструментами выравнивания:



Доработаем скрипт следующим образом:



Дополнительные сведения о доступных командах и синтаксисе скриптов доступны во встроенной справке.

Добавим еще один регулятор, который привяжем к переменной, определяющей порог срабатывания тревоги.



И добавим подписи к элементам индикации и управления:



Для повышения эстетичности создаваемого веб-интерфейса добавим градиентный фон, воспользовавшись инструментом Add Rectangle в панели управления c.Web.



Зададим параметры прямоугольника и расположим его под уже имеющимися объектами:



После загрузки в контроллер веб-интерфейс будет иметь вид:


Встраивание готовых страниц

Дальнейшее расширение функциональных возможностей веб-интерфейса возможно с использованием готовых шаблонов, доступных для скачивания из раздела c.Web портала ksa.carel.com:



В частности, доступны готовые страницы с отображением встроенного дисплея контроллера WebpGD, графиков логов и тревог.

Для применения указанных шаблонов соответствующие файлы необходимо загрузить в файловую систему контроллера по FTP . Для этого можно использовать программу FileZilla:


Заранее скачанные папки следует подготовить для копирования в папку HTTP контроллера.



Если до этого момента в контроллер уже был загружен веб-интерфейс, данная папка не будет пустой, и папки шаблонов следует добавить к уже имеющимся файлам:


По завершении процесса передачи данных папка HTTP контроллера будет иметь вид:


Чтобы воспользоваться шаблонами предлагается добавить на главную страницу пользовательского интерфейса меню с тремя пунктами: WebpGD, Тренды и Тревоги.



Также добавим новую страницу, назвав ее WebpGD.



В меню File выберем пункт Settings для настройки параметров новой страницы:


Установим размеры страницы 900 на 500 пикселей, после чего воспользуемся инструментом Add Foreign Object:


Нарисуем прямоугольник размером 460 на 800 пикселей - это зона, где будет отображаться экран контроллера и кнопки управления.

Щелкнув по данной зоне, получим окно редактирования скрипта объекта, куда добавим команду обращения к ранее загруженной шаблонной странице: