Липопротеины общая характеристика строения. Липопротеины и их роль

Одной из причин развития сахарного диабета является повышенный уровень холестерина в крови. Существует также и обратная связь, когда при диабете значительно повышаются показатели холестерина, что влечет за собой возникновение сердечно-сосудистых патологий.

Холестерин входит в состав липопротеидов, которые являются своеобразным транспортным средством, доставляющим жиры к тканям. Для контроля здоровья больного диабетом обязательно изучается уровень липопротеидов в крови, таким образом можно заметить и предупредить патологические изменения в организме.

Функции и значение

Липопротеидами (липопротеинами) называют комплексные соединения липидов и аполипопротеинов. Липиды необходимы для жизнедеятельности организма, но они являются нерастворимыми, поэтому не могут выполнять свои функции самостоятельно.

Аполипопротеины — это белки, которые связываются с нерастворимыми жирами (липидами), преображаясь в растворимые комплексы. Липопротеины транспортируют по организму различные частицы — холестерин, фосфолипиды, триглицериды. Липопротеиды играют важную роль в организме. Липиды являются источником энергии, а также повышают проницаемость мембран клеток, активизируют ряд ферментов, участвуют в образовании половых гормонов, работе нервной системы (передаче нервных импульсов, мышечных сокращений). Аполипопротеины активизируют процессы свертываемости крови, стимулируют иммунную систему, являются поставщиком железа для тканей организма.

Классификация

Липопротеиды классифицируют по плотности, составу белковой части, скорости флотации, размерам частиц, электрофоретической подвижности. Плотность и размер частиц связаны друг с другом — чем выше плотность фракции (соединения из белка и жиров), тем меньше ее размер и содержание липидов.

При помощи метода ультрацентрифугирования выявляют высокомолекулярные (высокая плотность), низкомолекулярные (низкая плотность), низкомолекулярные липопротеиды (очень низкая плотность) и хиломикроны.

Классификация по электрофоретической подвижности включает в себя фракции альфа-липопротеидов (ЛПВП), бета-липопротеидов (ЛПНП), пере-бета-липопротеиды (ЛПОНП), мигрирующие к зонам глобулинов и хиломикроны (ХМ), которые остаются на старте.

По гидратированной плотности к выше перечисленным фракциям добавляются липопротеиды промежуточной плотности (ЛППП). Физические свойства частиц зависят от состава белка и липидов, а также от их соотношения друг с другом.

Виды

Липопротеиды синтезируются в печени. Жиры, поступающие в организм извне, поступают в печень в составе хиломикронов.

Различают следующие виды белково-липидных комплексов:

  • ЛПВП (высокая плотность соединений) являются самыми маленькими частицами. Данная фракция синтезируется в печени. Она содержит фосфолипиды, которые не позволяют холестерину покидать кровяное русло. Липопротеины с высокой плотностью осуществляют обратное движение холестерола от периферийных тканей к печени.
  • ЛПНП (низкая плотность соединений) больше по размерам, чем предыдущая фракция. Помимо фосфолипидов и холестерина, содержит триглицериды. Липопротеины низкой плотности доставляют липиды к тканям.
  • ЛПОНП (очень низкая плотность соединений) являются самыми крупными частицами, уступающими по размерам лишь хиломикронам. Фракция содержит много триглицеридов и «плохого» холестерина. Липиды доставляются к периферийным тканям. Если в крови циркулирует большое количество пере-бета-липопротеидов, то она становится мутной, с молочным оттенком.
  • ХМ (хиломикроны) вырабатываются в тонком кишечнике. Это самые крупные частицы, содержащие липиды. Они доставляют жиры, поступившие в организм с пищей, к печени, где в дальнейшем происходит расщепление триглицеридов на жирные кислоты и присоединение их к белковой составляющей фракций. Хиломикроны могут попадать в кровь только при очень существенных нарушениях обмена жиров.

ЛПНП и ЛПОНП относятся к атерогенным липопротеидам. Если в крови преобладают эти фракции, то это приводит к образованию холестериновых бляшек на сосудах, которые становятся причиной развития атеросклероза и сопутствующих сердечно-сосудистых патологий.

ЛПОНП повышены: что это значит при диабете

При наличии сахарного диабета существует повышенный риск развития атеросклероза из-за высокого содержания низкомолекулярных липопротеидов в крови. При развивающейся патологии изменяется химический состав плазмы и крови, а это ведет к нарушению функций почек и печени.

Сбои в работе этих органов приводят к повышению уровня липопротеидов с низкой и очень низкой плотностью, циркулирующих в крови, в то время как уровень высокомолекулярных комплексов снижается. Если показатели ЛПНП и ЛПОНП повышены, что это значит и как предупредить нарушение жирового обмена, можно ответить только после диагностики и выявления всех факторов, спровоцировавших увеличение белково-липидных комплексов в кровяном русле.

Значимость липопротеидов для диабетиков

Ученые давно установили взаимосвязь между уровнем глюкозы и концентрацией холестерина в крови. У диабетиков существенно нарушается баланс фракций с «хорошим» и «плохим» холестерином.

Особенно отчетливо такая взаимозависимость обмена веществ наблюдается у людей с диабетом второго типа. При хорошем контроле уровня моносахаридов диабета первого типа риск развития сердечно-сосудистых заболеваний снижается, а при втором типе патологии, независимо от такого контроля, ЛПВП все равно остается на низком уровне.

Когда при диабете ЛПОНП повышены, что это значит для здоровья человека можно сказать по степени запущенности самой патологии.

Дело в том, что сам по себе сахарный диабет негативно влияет на работу различных органов, в том числе и сердца. Если при наличии сопутствующих нарушений добавляется атеросклероз сосудов, то это может привести к развитию инфаркта.

Дислипопротеинемия

При сахарном диабете, особенно если его не лечить, развивается дислипопротеинемия — недуг, при котором происходит качественное и количественное нарушение белково-липидных соединений в кровяном русле. Это происходит по двум причинам — образованием в печени преимущественно липопротеинов низкой или очень низкой плотности и малой скорости их выведения из организма.

Нарушение соотношения фракций является фактором развития хронической патологии сосудов, при которой на стенках артерий образуются холестериновые отложения, в результате чего сосуды уплотняются и сужаются в просвете. При наличии аутоиммунных заболеваний липопротеиды становятся для клеток иммунитета чужеродными агентами, к которым вырабатываются антитела. В этом случае антитела еще больше увеличивают риск развития заболеваний сосудов и сердца.

Липопротеиды: норма при диагностике и методы лечения при отклонениях

При сахарном диабете важно контролировать не только уровень глюкозы, но и концентрацию липопротеидов в крови. Определить коэффициент атерогенности, выявить количество липопротеидов и их соотношение по фракциям, а также узнать уровень триглицеридов, холестеролов можно с помощью липидограммы.

Диагностика

Анализ на липопротеиды выполняется посредством забора крови из вены. До проведения процедуры пациенту не следует принимать пищу в течение двенадцати часов. За сутки до анализа нельзя употреблять спиртные напитки, а за час до исследования не рекомендуется курить. После забора материала его исследуют ферментативном методом, при котором пробы окрашиваются специальными реагентами. Данная методика позволяет точно определить количество и качество липопротеидов, что позволяет врачу верно оценить риск развития атеросклероза сосудов.

Холестерин, триглицериды и липопротеиды: норма у мужчин и женщин

У мужчин и женщин нормальные показатели липопротеинов различаются. Это связано с тем, что коэффициент атерогенности у женщин снижен из-за повышенной эластичности сосудов, которую обеспечивает эстроген — женский половой гормон. После пятидесятилетнего возраста липопротеиды норма как у мужчин, так и у женщин становятся одинаковыми.

ЛПВП (ммоль/л):

  • 0,78 — 1,81 — для мужчин;
  • 0,78 — 2,20 — для женщин.

ЛПНП(ммоль/л):

  • 1,9 — 4,5 — для мужчин;
  • 2,2 — 4,8 — для женщин.

Холестерин общий (ммоль/л):

  • 2,5 — 5,2 — для мужчин;
  • 3,6 — 6,0 — для женщин.

Триглицериды, в отличии от липопротеидов, имеют повышенные показатели нормы у мужчин:

  • 0,62 — 2,9 — для мужчин;
  • 0,4 — 2,7 — для женщин.

Как правильно расшифровать результаты анализов

Коэффициент атерогенности (КА) вычисляют по формуле: (Холестерин — ЛПВП)/ЛПВП. Например, (4,8 — 1,5)/1,5 = 2,2 ммоль/л. — этот коэффициент является низким, то есть вероятность развития болезней сосудов невелика. При значении, превышающем 3 единицы, можно говорить о наличии у пациента атеросклероза, а если коэффициент равен или превышает 5 единиц, то у человека могут быть патологии сердца, мозга или почек.

Лечение

При нарушении обмена липопротеидов больному прежде всего следует придерживаться строгой диеты. Необходимо исключить или существенно ограничить потребление животных жиров, обогатить рацион овощами и фруктами. Продукты следует готовить на пару или отваривать. Необходимо кушать маленькими порциями, но часто — до пяти раз в день.

Не менее важна постоянная физическая нагрузка. Полезны пешие прогулки, зарядка, занятия спортом, то есть любые активные физические действия, которые будут способствовать снижению уровня жиров в организме.

Для больных сахарным диабетом необходимо контролировать количество глюкозы в крови, принимая сахаропонижающие медикаменты, фибраты и сатины. В некоторых случаях может потребоваться инсулинотерапия. Помимо медикаментов, нужно отказаться от приема алкоголя, курения и избегать стрессовых ситуаций.

По завершении процессов всасывания , когда все хиломикроны будут извлечены из плазмы крови, более 95% всех липидов плазмы крови оказываются представленными липопротеинами. Это частицы значительно мельче, чем хиломикроны, но по составу практически подобны им, т.к. включают триглицериды, холестерол, фосфолипиды и белок. Общая концентрация липопротеинов в плазме крови составляет приблизительно 700 мг на 100 мл плазмы, или 700 мг/дл.

Виды липопротеинов . Помимо хиломикронов, которые являются очень крупными липопротеинами, существуют четыре основные типа липопротеинов, классифицируемых по плотности, определяемой путем ультрацентрифугирования:
(1) липопротеины очень низкой плотности , в которых в высокой концентрации присутствуют триглицериды и в умеренной - как холестерол, так и фосфолипиды;
(2) липопротеины промежуточной плотности , из которых часть триглицеридов извлечена, а потому представленность холестерола и фосфолипидов соответственно увеличена;

(3) липопротеины низкой плотности (ЛПНП ), получаемые из группы липопротеинов промежуточной плотности после извлечения почти всех триглицеридов при оставшейся особенно высокой концентрации холестерола и умеренной концентрации фосфолипидов;
(4) липопротеины высокой плотности (ЛПВП ), с высокой концентрацией белка (около 50%), но при значительно меньшей концентрации холестерола и фосфолипидов.

Образование и функция липопротеинов . Почти все липопротеины образуются в печени, являющейся, кроме того, местом, где синтезируется большая часть холестерола, фосфолипидов и триглицеридов, поступающих потом в плазму крови. Кроме того, липопротеины высокой плотности в маленьких количествах образуются эпителиоцитами кишечника во время всасывания жирных кислот из кишечника.

Основной функцией липопротеинов является транспорт липидных компонентов к тканям. Липопротеины очень низкой плотности доставляют триглицериды, синтезируемые печенью, главным образом к жировой ткани. Другие липопротеины особенно важны на разных этапах транспорта фосфолипидов и холестерола из печени к периферическим тканям или, наоборот, с периферии в печень. Далее в этой главе мы подробнее рассмотрим проблемы транспорта холестерола в связи с такой болезнью, как атеросклероз, развитие которого связано с жировым повреждением внутренней поверхности стенки артерий.
Жиры в большом количестве откладываются в жировой ткани и печени, поэтому жировую ткань называют жировым депо.

Главной функцией жировой ткани является создание запасов триглицеридов, которые могут быть использованы организмом в качестве источника энергии. Менее значимой функцией является обеспечение теплоизоляции тела.

Жировые клетки (адипоциты) . Жировые клетки жировой ткани являются измененными фибробластами, которые запасают почти чистые триглицериды в количествах, составляющих от 80 до 95% объема всей клетки. Триглицериды внутри клеток содержатся главным образом в жидкой форме. Если ткани подвергаются длительному охлаждению, то цепочки жирных кислот, входящих в состав триглицеридов, через несколько недель становятся либо короче, либо в них увеличивается количество ненасыщенных связей, снижающее их точку плавления, что способствует сохранению липидов в жидкой форме. Это особенно важно, поскольку только пребывая в жидкой форме, они могут гидролизоваться и транспортироваться из клеток.
Жировые клетки синтезируют очень небольшие количества жирных кислот и триглицеридов из углеводов. Эта функция дополняет синтез жиров в печени.


Основными липидами плазмы крови человека являются триглицериды, фосфолипиды и эфиры холестерина. Эти соединения представляют собой эфиры длинноцепочечных жирных кислот и в качестве липидного компонента входят все вместе в состав липопротеинов. Жир

ные кислоты присутствуют в плазме также в свободной (неэстерифициро- ванной) форме.
Местом хранения жирных кислот служит жировая ткань, а утилизируются они в печени и мышцах, куда транспортируются в форме свободных жирных кислот (СЖК). Жирные кислоты, в особенности - пальмитиновая, олеиновая и линолевая, - откладываются в жировой ткани в виде триглицеридов. Скорость мобилизации триглицеридов определяется работой гормончувствительной липазы, активность которой возрастает под действием некоторых гормонов, таких, как норадреналин и глюкокортикоиды. Липолиз приводит к высвобождению в плазму жирных кислот и глицерина и усиливается в состоянии острого стресса, при длительном голодании и недостатке инсулина.
Триглицериды (или триацилглицериды) представляют собой эфиры жирных кислот и глицерина. Синтез триглицеридов в печени и жировой ткани осуществляется по глицерофосфатному пути, тогда как в тонком кишечнике триглицериды образуются, главным образом, за счет непосредственной эстерификации всасываемых из пищи моноглицеридов. Ресинтезируемые в клетках тонкого кишечника триглицериды выходят в кишечные лимфатические сосуды в форме хиломикронов, а затем поступают в кровоток через грудной лимфатический проток. В норме всасывается свыше 90% триглицеридов. Это означает, что ежедневно в кровь попадает 70-150 г экзогенных триглицеридов. В тонком кишечнике происходит образование и так называемых эндогенных триглицеридов, которые синтезируются из эндогенных жирных кислот, однако их главным источником является печень, откуда они секретируются в форме липопротеинов очень низкой плотности (ЛПОНП). Спектр остатков жирных кислот, обнаруживаемых в триглицеридах и ЛПОНП, в значительной степени зависит от набора жирных кислот триглицеридов, поступающих с пищей.
Два основных фосфолипида, которые присутствуют в плазме, - это фосфатидилхолин (лецитин) и сфингомиелин. Синтез фосфолипидов происходит почти во всех тканях, но главным источником фосфолипидов плазмы служит печень. Фосфолипиды являются неотъемлемым компонентом всех клеточных мембран. Между плазмой и эритроцитами постоянно происходит обмен лецитином и сфингомиелином. Оба эти фосфолипида присутствуют в плазме в качестве составных компонентов ли- попротеинов, где они играют ключевую роль, поддерживая в растворимом состоянии неполярные липиды, такие, как триглицериды и эфиры холестерина.
Холестерин - это стерин, содержащий стероидное ядро из четырех колец и гидроксильную группу. Это соединение обнаруживается в организме как в виде свободного стерина, так и в форме сложного эфира с одной из длинноцепочечных жирных кислот. Свободный холестерин -
компонент всех клеточных мембран и та основная форма, в которой холестерин присутствует в большинстве тканей. Исключение представляют кора надпочечников, плазма и атероматозные бляшки, где преобладают эфиры холестерина. Большинство тканей обладает способностью к синтезу холестерина, но в норме практически весь холестерин синтезируется в печени и дистальной части тонкого кишечника.
Ранней стадией синтеза холестерина является превращение ацетата в мевалоновую кислоту. Фермент, определяющий скорость этого процесса, называется 3-гидрокси-3-метилглутарил-коэним А-редуктаза (ГМГ-КоА-редуктаза). Активность этого фермента регулируется по принципу обратной связи с помощью конечного продукта реакции - холестерина. Основные метаболиты холестерина, - желчные кислоты,

  • синтезируются исключительно в печени. Ключевым ферментом в этом случае служит холестерин-7-альфа-гидроксилаза.
Результаты экспериментов по изучению изменений плазмаспецифи- ческой активности после введения радиоактивного холестерина свидетельствуют о существовании в организме трех пулов холестерина. Холестерин каждого из пулов обменивается с холестерином плазмы, причем скорости установления равновесия сильно различаются. Быстро обменивающийся пул представлен холестерином липопротеинов плазмы, эритроцитов, печени, кишечника и некоторых других внутренних органов и содержит 20-25 г чистого холестерина. Количество холестерина в промежуточном пуле составляет около 10-12 г. К этому пулу относится холестерин периферических тканей, таких, как кожа и жировая ткань. Медленно обменивающийся пул содержит наибольшее количество холестерина (35-37 г) и включает холестерин разных тканей, таких, как скелетные мышцы и стенки сосудов . В стационарном состоянии метаболизма поступление синтезируемого и всасываемого холестерина в быстро обменивающийся пул сбалансировано выведением холестерина путем фекальной экс-креции. Независимо от того, сколько холестерина попадает в организм с пищей, усваивается в среднем 35-40%, причем процесс всасывания опосредуется лимфатической системой. Всасывание холестерина пищи и реабсорбция жирных кислот играют важную роль в организации скорости синтеза холестерина клетками печени . Синтез желчных кислот опре-деляется эффективностью их циркуляции между печенью и тонким кишечником и поэтому увеличивается при любом воздействии, которое затрудняет их реабсорбцию.
Более двух третей холестерина плазмы эстерифицировано преимущественно линолевой и олеиновой кислотами. Эти эфиры образуются, в основном, в плазме под действием фермента лецитин-холестерин- ацил-трансферазы (ЛХАТ). Относительно небольшой вклад в этот процесс вносит также фермент тонкого кишечника и печени - АКАТ. Природа эфиров холестерина зависит в значительной степени от жирнокис
лотного состава лецитина плазмы или, иными словами, - от типа жиров в пище. В отличие от своих эфиров, свободный холестерин плазмы легко обменивается с холестерином клеточных мембран.
В норме уровень общего холестерина (ОХС) плазмы крови варьируется от 4 до 6,5 ммоль/л, но, в отличие от уровня триглицеридов, не воз- рас-тает резко после потребления жирной пищи.
Все липиды, за исключением свободных жирных кислот, попадают в плазму в форме макромолекулярных комплексов, называемых липоп- ротеинами. Эти комплексы содержат специфические белковые компоненты аполипопротеины (апопротеины или просто апо), взаимодействующие с фосфолипидами и свободным холестерином и образующие полярную наружную оболочку, которая экранирует расположенные внутри неполярные триглицериды и эфиры холестерина.
С помощью ультрацентрифугирования плазмы крови, взятой у донора после приема пищи, можно выделить шесть классов липопротеи- нов. Все они представляют собой сферические частицы, различающиеся по размеру и состоящие из смеси белков, фосфолипидов, триглицеридов, свободного и эстерифицированного холестерина, относительные количества которых варьируются в разных классах липопротеинов. Так, основная часть холестерина обнаруживается в липопротеинах низкой плотности (ЛПНП), а существенно меньшая - в ЛПОНП и липопроте- инах высокой плотности (ЛПВП). В отличие от холестерина, эндогенные триглицериды переносятся преимущественно в составе ЛПОНП. Хиломикроны служат для переноса триглицеридов в первые часы после приема пищи и в норме через 12 ч голодания полностью исчезают из плазмы. Таким образом, измерение содержания общего холестерина и триглицеридов в плазме или сыворотке крови дает сумму вкладов каждого класса липопротеинов. Изменение количества сывороточных липидов обычно отражает изменения либо в концентрации липопротеи- нов, либо в соотношении уровней липопротеинов различных классов. В норме концентрация ремнантных частиц, или липопротеинов промежуточной плотности (ЛППП), в плазме относительно низка и, как правило, их вкладом пренебрегают, но он может стать определяющим при измерении содержания холестерина и три-глицеридов в крови пациентов с некоторыми формами гиперлипидемии.
Прежде чем описывать метаболизм различных классов липопротеинов, необходимо сделать краткий обзор физических свойств как самих этих частиц, так и входящих в их состав аполипопротеинов. Липоротеины плазмы различаются по скорости флотации, гидратированной плотности, размеру и электрофоретической подвижности. В настоящее время наиболее распространена классификация липопротеинов, основанная на различиях в их плотности, что используется для разделения этих частиц методом ультрацентрифугирования. Кроме того, липопротеины суще
ственно различаются и по содержанию аполипопротеинов, или апоп- ротеинов .
Апопротеины выполняют три основные функции: 1) взаимодействуя с фосфолипидами, помогают солюбилизировать эфиры холестерина и три-глицериды; 2) регулируют реакции липидов липопротеинов с ферментами, такими, как ЛХАТ, липопротеинлипаза и печеночная липаза; 3) связываются с рецепторами на поверхности клеток, определяя, таким образом, места захвата и скорость деградации других компонентов, в частности - холестерина. Связывание апопротеинов с липидами осуществляется, главным образом, за счет гидрофобных взаимодействий между жирнокислотными цепями фосфолипидов и неполярными областями апопротеинов. Ионные взаимодействия между полярными группами головок фосфолипидов и парами противоположно заряженных аминокислот апопротеинов играют вторичную стабилизирующую роль.
Аполипопротеины семейства А, - апо А-I и апо А-II, - это основные белковые компоненты ЛПВП. Существуют данные, свидетельствующие о том, что когда оба апопротеина А находятся рядом, как это бывает в ЛПВП, апо А-II усиливает липидсвязывающие свойства апо А-I. Другая функция апо А-I - это активация фермента ЛХАТ
Апопротеин В, или апо В, отличается гетерогенностью и различиями в молекулярном весе; апо ВЮ0 обнаруживается, главным образом, в хиломикронах, ЛПОНП и ЛПНП, а апо В48 - только в хиломикронах. При этом апо ВЮ0 служит лигандом рецептора ЛПНП, апо В48 - нет.
К апопротеинам С относятся, по крайней мере, три индивидуальных апопротеина, которые являются основными компонентами ЛПОНП и минорным компонентом ЛПВП. Считается, что апо С-II активирует фермент липопротеинлипазу.
Апопротеин Е, - компонент ЛПОНП, ЛППП и ЛПВП, - поступает в плазму преимущественно в составе новосинтезированных ЛПВП. Апо Е выполняет несколько функций, в том числе - рецептор-опосредован- ный перенос холестерина между тканями и плазмой.
Из других апопротеинов следует упомянуть апо D, минорный компонент ЛПВП; апо А-IV, обнаруженный в хиломикронах кишечника; а также апо (а), один из белковых компонентов особого липопротеина (а), или ЛП (а) . В настоящее время в литературе имеются детальные обзоры современных данных по структуре и функциям аполипопротеинов .
Липопротеины отдельных классов принимают различное участие в атерогенезе, в связи с чем необходимо привести их краткую характеристику.
Хиломикроны - самые крупные липопротеиновые частицы, имеют диа-метр от 100 до 1000 нм и содержат преимущественно триглицери
ды, а также небольшие количества фосфолипидов, свободного холестерина, его эфиров и белка. Основной функцией хиломикронов является перенос пищевых триглицеридов из кишечника, где происходит их всасывание, в кровяное русло.
ЛПОНП (пре-в-липопротеины) - по структуре и составу сходны с хиломикронами, но обладают меньшими размерами, от 25 до 100 нм, и содержат меньше триглицеридов, но больше холестерина, фосфолипидов и белка. От хиломикронов ЛПОНП отличаются по месту синтеза и источнику транспортируемых триглицеридов. Так, ЛПОНП образуются, в основном, в печени и служат для переноса эндогенных триглицеридов .
Скорость образования ЛПОНП растет при увеличении потока свободных жирных кислот, поступающих в печень, а также в ситуациях, когда в печени возрастает скорость синтеза эндогенных жирных кислот, что происходит при попадании в организм большого количества углеводов.
Частицы ЛПОНП варьируются по размеру. В результате липолиза образуются ЛПОНП небольшого размера, - их называют ремнантными ЛПОНП или липопротеинами промежуточной плотности (ЛППП), - которые являются промежуточным продуктом в процессе превращения ЛПОНП в ЛПНП. При гипертриглицеридемии наблюдается возрастание не только числа, но также и размеров ЛПОНП, что, вероятно, может служить причиной другого характерного признака данного заболевания - снижения уровня ЛПНП.
ЛПНП ф-липопротеины) - главный из классов липопротеинов плазмы, переносящих холестерин. Эти частицы отличаются от своих предшественников ЛПОНП значительно более низким содержанием триглицеридов и присутствием только одного апо В100 из разнообразных апопротеинов, обнаруживаемых в ЛПОНП. Катаболизм ЛПНП зависит как от факторов среды, например - от типа потребляемых жиров, так и от генетических факторов - мутаций генов, кодирующих рецептор ЛПНП и апо В.
ЛПВП (а-липопротеины) по диапазону плотности подразделяются на подклассы ЛПВП2 и ЛПВП3. Свыше 90% белка ЛПВП представлено белком апо А. Синтезируются ЛПВП в печени и тонком кишечнике. Накопление эфиров холестерина в ретикуло-эндотелиальной системе пациентов, у которых отсутствуют ЛПВП (болезнь Танжера), говорит о том, что в норме ЛПВП играют ведущую роль в удалении тканевого холестерина.
ЛП (а) - крупнее ЛПНП, но обладают по сравнению с ними большей плотностью и имеют электрофоретическую подвижность, свойственную ЛПОНП. По липидному составу ЛП (а) не отличается от ЛПНП, но имеют больше белка, в том числе собственный апо (а) - по
лиморфный белок, обладающий высокой степенью гомологии с плаз- миногеном и содержащий большее количество углеводов. Имеются данные, что ЛП (а) образуются исключительно в печени, независимо от метаболизма ЛПОНП .
Метаболизм липопротеинов - это сложный динамический и во многом не изученный процесс, включающий в себя как разнообразные перемещения липидов и апопротеинов между отдельными классами ли- попротеинов, так и целый ряд реакций, катализируемых ферментами. Эти взаимодействия приводят, в том числе, к рецептор-опосредованно- му поступлению холестерина в клетку или к его удалению из клетки .
Здесь уместно напомнить, что функция апопротеинов не ограничивается только тем, что они образуют с липидами растворимые и, следовательно, транспортируемые кровью комплексы. Установлено, что некоторые апопротеины выполняют коэнзимную роль, активируя отдельные реакции липидного обмена. В частности, апо А-I активирует реакцию, осуществляемую ЛХАТ В ходе этой реакции, как известно, происходит эстерификация свободного холестерина в плазме крови. Имеются данные, что реакция ЛХАТ катализируется также апо С-I.
Апо С-II оказался необходимым компонентом для реакций, катализируемых липопротеинлипазами. Так как при действии липопротеин- липазы происходит расщепление триглицеридов хиломикронов и ЛПОНП, то эта реакция приобретает особое значение как начальная ступень в катаболизме названных липопротеинов .
В 1985 году американским ученым J.Goldstein и M.Brown была присуждена Нобелевская премия за открытие рецептора ЛПНП и установление причины семейной гиперхолестеринемии . Они обнаружили, что основная роль рецептора ЛПНП заключается в том, чтобы обеспечить все клетки организма доступным источником холестерина, который необходим для синтеза клеточных мембран, а определенные органы используют его также и в качестве субстрата для образования некоторых продуктов своего метаболизма, например, желчных кислот, половых гормонов, кортикостероидов. Поэтому клетки печени, половых желез и надпочечников содержат большое количество рецепторов ЛПНП. Печень, в силу своего размера, является основным местом ре- цептор-опосредованного катаболизма ЛПНП. Рецепторы ЛПНП связывают также ремнантные ЛПОНП (или ЛППП) и один из подклассов ЛПВП, имеющий белок апо-Е .
Координированная регуляция экспрессии рецептора ЛПНП и активности ГМГ-КоА-редуктазы обеспечивает функционирование гомеостатического механизма снабжения холестерином таких клеток, как гепа- тоциты, повседневно перерабатывающих большие его количества. Фармакологические средства, конкурентно ингибирующие ГМГ-КоА-ре-
дуктазу, блокируют эндогенный синтез холестерина и посредством этого стимулируют экспрессию рецептора ЛПНП, что приводит к снижению уровня холестерина ЛПНП в плазме крови.
Рецептор ЛПВП был идентифицирован в культивируемых фиброб- ластах и гладкомышечных клетках. Экспрессия этого рецептора увеличивается при нагрузке клеток холестерином. Кроме того, описаны два других рецептора липопротеинов , хотя их вклад в метаболизм липопротеинов in vivo не установлен.
В упрощенном виде внутриклеточный и тканевой метаболизм липопротеинов разных классов можно представить следующим образом. Хи- ломикроны доставляют липиды пищи в плазму крови через лимфу. Под воздействием внепеченочной липопротеинлипазы, активируемой а- по С-II, хиломикроны в плазме превращаются в ремнанты, которые захватываются рецепторами гепатоцитов, распознающими поверхностный апо-Е. Эндогенные триглицериды переносятся ЛПОНП из печени в плазму, где они, как и хиломикроны, претерпевают частичную деградацию до ремнантных ЛПОНП, или ЛППП. В свою очередь, ЛППП либо захватываются рецепторами ЛПНП, распознающими апо Е или апо ВЮ0, либо превращаются в ЛПНП, содержащие апо ВЮ0, но уже не имеющие апо Е. В этом процессе может принимать участие печеночная липаза. Катаболизм ЛПНП протекает двумя основными путями, один из которых связан с рецепторами ЛПНП, а второй - с печеночной триг- лицеридлипазой. ЛПВП имеют сложное происхождение: их липидный компонент включает или свободный холестерин и фосфолипиды, высвобождающиеся при липолизе хиломикронов и ЛПОНП, или свободный холестерин, поступающий из периферических клеток, в то время как основной апопротеин ЛПВП, апо А-I, синтезируется и в печени, и в тонком кишечнике. Новосинтезированные частицы ЛПВП в плазме представлены подклассом ЛПВП3, но, в конечном итоге, под воздействием ЛХАТ, активируемой апо А-I , они превращаются в ЛПВП2 . К сожалению, мы не располагаем пока точными данными о последовательности сборки липопротеиновых частиц, не говоря уже о механизмах этого процесса.
Таблица 1.1
Пределы колебаний содержания общего холестерина (ОХС), триглицеридов (ТГ), ХС-ЛПНП и ХС-ЛПВП в плазме крови (в ммоль/л) в норме .

Возраст, годы

ОХС

ТГ

ХС-ЛПНП

ХС-ЛПВП

0-19

3.2-5.2

0.4-1.5

1.7-3.4

1.0-1.9

20-29

3.2-5.9

0.5-2.1

1.8-4.3

0.8-1.7

30-39

3.7-6.8

0.6-3.2

2.1-4.9

0.8-1.7

40-49

4.0-7.0

0.6-3.5

2.3-5.0

0.8-1.7

50-59

4.1-7.2

0.7-3.3

2.3-5.2

0.8-1.7

Основные липиды, которые находятся в плазме крови, представлены холестерином, триглицеридами и фосфолипидами. Они жизненно необходимы организму для осуществления многих функций, но из-за их особенностей, в частности, нерастворимой структуры, для их переноса к клеткам тканей и органов необходимы белки – аполипопротеины. Связываясь с ними, липиды могут беспрепятственно перемещаться вместе с током крови.

Таким образом, липопротеины плазмы крови представляют собой комплекс белков и липидов, который имеет водорастворимую структуру, что позволяет им активно включаться в метаболические процессы.

Все известные липопротеиды содержат в себе холестерин, триглицериды и фосфолипиды, но их пропорции отличаются в зависимости от фракции липидного соединения. Липопротеины разняться и по другим параметрам: размеру соединения, группам апопротеинов, скорости флотации, плотности комплекса.

Классификация липопротеидов

На сегодняшний день известно множество различных классификаций липидных комплексов, но наиболее известной и популярной является классификация, в основе которой лежит порядок продвижения липопротеинов от линии старта в гравитационном поле в процессе ультрацентрифугирования.

Выделяют следующие фракции липопротеидов:

  • (ХМ);
  • липопротеины низкой плотности (ЛПНП);
  • (ЛПОНП);
  • липопротеины промежуточной плотности (ЛППП);
  • плотности (ЛПВП).

Определяют наличие этих соединений в крови посредством биохимии или липидограммы.
Каждая группа липопротеидов имеет различные размеры входящих в соединение частиц, содержание белков в них также разное. Рассмотрим в таблице основные характеристики транспортных форм липидов.

Таблица сравнительной характеристики липопротеинов

ХМ ЛПНП ЛПОНП ЛППП ЛПВП
Содержание белков, % 2 22 10 11 50
Содержание холестерина, % 2 8 7 8 4
Размер частиц, нм 75-1200 18-26 30-80 25-35 8-11
Место образования Эпителий тонкого кишечника Кровь Клетки печени Кровь Клетки печени
Функции Транспорт жирных кислот и холестерина, которые поступают с пищей, из кишечника к клеткам печени и периферическим тканям. Транспорт липидов от клеток печени к периферийным тканям. Промежуточная форма преобразования ЛПОНП в ЛПНП. Транспорт липидов от периферийных тканей к клеткам печени, удаление избытка холестерина из других липопротеинов и клеток организма.

Все названные фракции липопротеинов находятся в неразрывной связи друг с другом, обеспечивая полноценное питание клеток организма и являясь основой биохимии многих процессов. Если под влиянием различных факторов наблюдается нарушение обмена липопротеидов, естественный баланс липидов в крови нарушается, и в организме начинают развиваться патологические процессы, главный из которых представлен атеросклеротическим поражением сосудов. Рассмотрим названные липопротеины крови подробнее.

Хиломикроны

Образование этих липопротеидов крови происходит в эпителиальных клетках кишечника после переваривания пищи и всасывания жиров из тонкой кишки. После этого они попадают в межклеточное пространство и дальше всасываются в лимфатические капилляры ворсинок. Являются самыми крупными в диаметре липопротеиновыми соединениями.

Хиломикроны переносят в крови холестерин, триглицериды и экзогенные жирные кислоты. На 85% ХМ состоят из триглицеридов, поэтому их относят к группе триглицерид-богатым липопротеинам. Эти липидные соединения необходимы для переноса триглицеридов в несколько первых часов после приема пищи. Считается, что в норме спустя 12 часов после последнего принятия пищи они полностью исчезают из плазмы крови.

В процессе метаболизма липидов эти комплексы встречаются в крови с липопротеинами высокой плотности и обмениваются разными подтипами белков – апопротеинов. При их расщеплении освобождаются эфиры холестерина и белки, часть которых связывается липопротеидами высокой плотности, а остальная масса попадает в клетки печени, преобразуется там и выводится из организма.

ЛПНП

Эту фракцию липопротеинов относят к наиболее атерогенным, так как она содержит в своем составе в среднем 45% холестерина и является его основной транспортной формой, при этом также способствуют транспортировке каротиноидов, триглицеридов, витамина Е и некоторых других компонентов. При этом около 60-70% всего холестерина сыворотки крови концентрируется именно в этих соединениях.

В процессе липолиза эти соединения образуются из ЛПОНП, при этом содержание триглицеридов в полученном комплексе падает, а холестерина, наоборот, – растет. Так, эти структуры являются завершающим этапом метаболизма липидов, произведенных клетками печени.

Считается, что именно концентрация этих липопротеинов в крови более полно отражает вероятность атеросклеротических поражений сосудистых стенок, даже уровень холестерина имеет в этом плане меньшее значение.

В результате нарушения обмена липопротеидов низкой плотности, особенно в сторону увеличения их уровня в крови, у человека начинают развиваться тяжелые заболевания, особенно если вовремя не приступить к его нормализации. Причинами таких нарушений могут быть:

  • неправильное питание;
  • болезни печени;
  • наследственные нарушения липидного обмена;
  • курение и чрезмерное употребление алкоголя;
  • эндокринные заболевания;
  • малоподвижный образ жизни.

Чтобы постоянно контролировать этот показатель, нужно ежегодно делать биохимию крови, и в случае обнаружения малейших отклонений от нормы принимать соответствующие меры.

ЛПОНП

Эта фракция липопротеинов по своим составу и структуре похожи на хиломикроны, однако по размеру меньше. В их составе меньше триглицеридов, но больше аполипопротеинов, фосфолипидов и холестерина. При этом ЛПОНП вместе с хиломикронами относят к триглицерид-богатым липопротеидам.

Местом синтеза этих комплексов называют клетки печени, а их главная задача – транспорт триглицеридов, образованных в этом же органе. Эти комплексы также транспортируют холестерин, эфиры холестерина и фосфолипиды к клеткам организма.

Скорость образования этих фракций липопротеидов варьируется в зависимости от определенных условий: она растет при увеличенном поступлении в печень свободных жирных кислот и большого количества углеводов.

ЛПОНП являются предшественниками липопротеидов низкой плотности, так как в результате гидролиза под действием фермента липопротеиновой липазы первые распадаются и образуется промежуточная форма липидов – ЛППП, которые дальше в процессе того же гидролиза превращаются в ЛПНП.

ЛПОНП называют высоко атерогенными соединениями, так как они относятся к источникам «плохого» холестерина в организме. Если эти комплексы повышены в крови, это создает предпосылки к развитию атеросклероза и его последствий. Основной причиной повышения их уровня называют наследственную предрасположенность и чрезмерное поступление с пищей животных жиров. Другими причинами этой патологии могут быть:

  • болезни печени и желчного пузыря;
  • эндокринные нарушения;
  • ожирение;
  • алкоголизм;
  • заболевания почек, особенно в хронической форме.

ЛППП

Эти структурные соединения образуются в плазме крови в процессе преобразования ЛПОНП в ЛПНП и их нередко называют ремнантными ЛПОНП. Под действием фермента липопротеинлипазы липопротеиды очень низкой плотности переходят в иную форму – ЛППП, половина которых в процессе сложных биохимических реакций полностью выводятся из организма, а вторая их часть в результате гидролиза с участием печеночной липазы переходит в ЛПНП.

Состав этих частиц напоминает нечто среднее между составами липопротеидов низкой и очень низкой плотности. Отмечено, что у здоровых людей в крови, взятой натощак, эти комплексы либо вообще отсутствуют, либо их концентрация меньше уровня ЛПНП в десять раз.

Основной причиной повышение концентрации этих соединений в плазме крови называют наследственную предрасположенность и рацион, богатый животными жирами. Этот фактор способствует развитию сердечно-сосудистых заболеваний.

ЛПВП

Эти соединения называют антиатерогенными, так как они не приводят к увеличению уровня «плохого» холестерина в крови, а наоборот, при их достаточной концентрации способствуют его связыванию и выведению из организма. Образуются они в клетках печени и наполовину состоят из белков, т. е. имеют максимальную из возможных плотность. При этом содержание холестерина в них минимально. Имеют самый малый размер и по форме напоминают диск, из-за чего в узких кругах ЛПВП именуют как «диски».

Синтез этих частиц происходит в клетках печени, при высвобождении из которых они связываются с фосфолипидами и начинают взаимодействовать с другими фракциями липопротеидов и клетками организма, захватывая холестерин и приобретая полноценную форму липидного соединения. Так ЛПВП доставляют излишек холестерина снова к клеткам печени, где он подвергается распаду и выводу через желудочно-кишечный тракт.

Другими словами, происходит постоянный обмен холестерином между ЛПНП и ЛПВП, при этом холестериновый поток направлен к последним. «Полезные» липопротеины получают холестериновые клетки от «плохих», после чего транспортируют его в печень для последующей переработки в желчные кислоты. Описанный процесс называют единственным естественным способом выведения холестерина из организма, поэтому для здоровья сердца и сосудов рекомендуют всегда поддерживать оптимальный уровень ЛПВП в плазме крови.

Модификации липопротеинов

Для определения риска развития сердечно-сосудистых заболеваний имеют значение не только сами липопротеиды, но и их модифицированные формы. Липопротеиды могут модифицироваться из обычных фракций, создавая патологические соединения. Основными причинами этого процесса называют: выброс клетками свободных радикалов; повышенная концентрация глюкозы в крови; выброс в кровь продуктов липидного обмена.

Выделяют следующие наиболее значимые модифицированные липопротеины:

  1. Липопротеин (а) – это особый вид липопротеидов низкой плотности, которые отличаются лишь по некоторым структурным особенностям. Так, к клетке липопротеина (а) дополнительно прикрепляется полипептидная белковая цепь. Это приводит к тому, что на стенках сосудов избирательно начинают накапливаться липопротеины (а), и развивается воспалительный процесс в них.
  2. Окисленные ЛПНП. В результате поступления в кровь большого числа свободных радикалов липиды мембран ЛПНП окисляются и в них внедряются продукты перекисного окисления липидов. Этот процесс инициирует появление пенистых клеток, которые становятся строительным материалом атеросклеротических бляшек.
  3. Гликированные ЛПНП. При присоединении глюкозы к белкам липопротеинов низкой плотности изменяется структура последних. Они модифицируются и в новой структуре способны задерживаться в кровяном русле, подвергаясь дополнительному окислению и откладываясь на стенках сосудов.
  4. Мелкие, плотные ЛПНП. Их относят к важнейшей группе модифицированных атерогенных соединений. Они содержат достаточное количество холестерина и фосфолипидов, при этом по структуре схожи с артериальными клетками. В результате сложной биохимии из мпЛПНП высвобождаются все фосфолипиды и холестерин, которые впоследствии откладываются на эндотелии сосудов.
  5. Модифицированные ЛПВП. В процессе синтеза ЛПВП в клетках печени некоторые соединения высвобождаются с дефектами, свойства которых переводят модифицированные ЛПВП из разряда антиатерогенных в атерогенные.

Наличие названных комплексов в плазме крови приводит к нарушению жирового обмена в организме, что чревато атеросклеротическими изменениями сосудов. Распознать модифицированные липопротеиды можно при помощи развернутой липидограммы. Такое исследование обязательно должно проводиться при подозрении на тяжелые в организме, а также при их наследственных формах.

Нормы содержания в крови

Важнейшим способом определения риска развития сердечно-сосудистых заболеваний является биохимия крови. Для каждой фракции липопротеидов подсчитаны нормы. Если результат будет превышать или принижать их, это говорит о необходимости проведения дополнительных исследований с целью подтверждения имеющихся заболеваний. Нормы липопротеидов в крови представлены в следующей таблице:

Для женщин эти показатели имеют свои нормы, что связано с некоторыми особенностями женского организма. Так, сюда можно отнести меньшую массу тела, особый гормональный фон (в частности, содержание в крови ингибина В и фолликулостимулирующего гормона) и соответствующие особенности обменных процессов в организме. Поэтому для женщин такая таблица будет выглядеть следующим образом:

Если полученные результаты незначительно отличаются от нормы, то предотвратить атеросклероз и нормализовать липидный обмен поможет коррекция питания. В противном случае может понадобиться серьезная медикаментозная терапия.

Отмечено, что довольно часто у женщин в период беременности, первые 6 недель после родов, перименопаузы и менопаузы данные показатели могут значительно разниться с нормальными значениями. Такие результаты можно отнести к варианту нормы (с учетом индивидуальных особенностей), если пациентка не имеет в анамнезе заболеваний печени, щитовидной железы, гипофиза, почек и некоторых других органов.

Повышение атерогенных фракций липопротеидов (ЛПНП, ЛПОНП), а также понижение липопротеидов высокой плотности у мужчин и женщин может говорить о наличии следующих заболеваний:

  • атеросклероз;
  • стенокардия;
  • инфаркт миокарда;
  • любой из типов гиперлипидемий;
  • наследственные гиперлипидемии и гиперхолестеринемии;
  • нарушение выработки гормонов щитовидной железы как в сторону увеличения, так и снижения;
  • заболевания гипофиза;
  • заболевания почек (нефротический синдром, хроническая почечная недостаточность);
  • болезни печени (хроническая печеночная недостаточность, порфирия, некоторые типы гепатита);
  • заболевания поджелудочной железы, в частности панкреатит и злокачественное образование;
  • алкогольная интоксикация;
  • ожирение;
  • патологии обмена веществ (например, подагра).

Для подтверждения большинства из перечисленных патологий недостаточно только проведения биохимии крови, потребуются и другие диагностические исследования. Стоит понимать, что некоторые состояния (например, беременность) или прием медикаментозных препаратов могут повлиять на результат биохимии крови. Поэтому такие особенности стоит обсудить с врачом, так как они должны быть указаны в направлении на анализ крови. Даже если женщина принимает противозачаточные таблетки, нужно либо на две недели отменить их прием или указать этот факт в бланке при прохождении липидограммы.

Атерогенные и антиатерогенные фракции липопротеидов

В последние годы отмечено большое распространение атеросклероза, который связан в первую очередь с развитием в организме заболевания геперлипопротеинемия и гиперхолестеролемией, которая обычно сопровождает данное состояние. Установлено, что развитие атеросклероза напрямую связано с повышением в крови атерогенных липопротеинов – ЛПНП и ЛПОНП (это наиболее атерогенные липидные соединения). При этом снижается концентрация в плазме крови липопротеидов высокой плотности – единственных антиатерогенных фракций липопротеидов.

К атерогенным липопротеинам также относят ЛППП, но их концентрация в крови не так важна в процессе оценки риска атеросклероза, так как эти фракции являются промежуточными липидами.

Как уже было описано ранее, фракция ЛПНП осуществляет транспорт эндогенного холестерина к периферическим тканям, в ЛПВП проделывают обратную работу – высвобождают холестериновые клетки из липопротеидов низкой плотности и клеток организма, после чего доставляют их в печень для последующей переработки в желчь и выведения из организма естественным путем. По этой причине оптимальный уровень антиатерогенных фракций липопротеидов так важен для липидного обмена и предотвращения образования атеросклеротических бляшек на стенках сосудов.

Рассматривая хиломикроны, стоит отметить, что сами эти комплексы не обладают атерогенными свойствами. Однако их остаточные компоненты могут быть атерогенными.

Для определения риска развития сердечно-сосудистых заболеваний используют коэффициент атерогенности, который рассчитывается по следующей формуле:

КА=(Общий холестерин – ЛПВП)/ЛПВП.

В норме у мужчин и женщин этот индекс должен находиться в диапазоне 2-3 единиц. Если он больше трех – это говорит о высоком риске атеросклероза. Пациенты с результатом больше 5 должны понимать, что атеросклеротические процессы уже протекают в их сосудах. Если этот показатель меньше двух, то особых нарушений со стороны липидного обмена в организме не наблюдается, но такой результат может быть спровоцирован некоторыми другими заболеваниями (например, почек, печени).

Для оценки состояния своего здоровья врачи рекомендуют сдавать биохимию крови ежегодно, а ее расширенную форму, где определяются все липопротеины плазмы крови – раз в 5 лет. Это позволит своевременно обнаружить нарушения липидного обмена и принять соответствующие меры для предотвращения развития тяжелых заболеваний сердечно-сосудистой системы.

Липопротеины или липопротеиды (англ. lipoprotein ) - сложные белки, состоящий из аполипопротеинов и липидов. Из липидов в состав липопротеинов могут входить: свободные жирные кислоты, фосфолипиды, холестерины, нейтральные жиры и другие. Аполипопротеины (синонимы: апобелки и апо) - белки, компоненты липопротеинов, специфически связывающиеся с соответствующими липидами при формировании липопротеина.

На иллюстрации: структура липопротеина. Автор оригинального рисунка AntiSense, лицензия GNU Free Documentation License. Адаптировано.

Типы липопротеинов
Существуют разные классификации липопротеинов, ориентированные на различные их характеристики. Липопротеины разделяют на растворимые в воде (плазме крови, молоке и т.п.) и структурные, входящие в состав мембран клеток, миелиновой оболочки нервных волокон, структурных тканей растений.

Наиболее известной и распространённая является классификация липопротеинов плазмы крови по плотности. Выделяют:

  • Хиломикроны
  • Липопротеины очень низкой плотности (ЛПОНП или ЛОНП)
  • Липопротеины низкой плотности (ЛПНП или ЛНП)
  • Липопротеины промежуточной (средней) плотности (ЛППП, ЛПП, ЛСП или ЛПСП)
  • Липопротеины высокой плотности (ЛПВП или ЛВП)
Плотность липопротеинов тем ниже, чем выше содержание в них липидов.

Средние значения характеристик разных классов липопротеинов (в популяции у молодых здоровых людей с весом около 70 кг):

Тип Плотность,
г/мл
Диаметр, нм % протеина % холестерина % фосфолипидов % триглицеридов
и эфиров холестерина
ЛПВП >1,063 5–15 33 30 29 4
ЛПНП 1,019–1,063 18–28 25 50 21 8
ЛППП 1,006–1,019 25–50 18 29 22 31
ЛПОНП 0,95–1,006 30–80 10 22 18 50
Хиломикроны <0,95 100-1000 <2 8 7 84



Отдельно выделяют липопротеины (а) (на рисунке слева) - подкласс липопротеинов плазмы крови человека. Липопротеин (а) является отдельным фактором риска развития сердечно-сосудистых заболеваний. Концентрация липопротеинов (а) в плазме крови определяется, в основном, генетически и физические упражнения, медикаментозная терапия или диета на него практически не влияют.
«Хорошие» и «плохие» липопротеины
Считается, что липопротеины высокой плотности являются «хорошими», а низкой, промежуточной и очень низкой плотности - «плохими». В общем случае, чем выше концентрация ЛПВП в плазме крови, тем меньше риск атеросклероза и других сердечно-сосудистых заболеваний. При его избытке «плохих» липопопротеинов (ЛПНП, ЛСП и ЛОНП) в стенках сосудов возникают бляшки, которые могут ограничивать движение крови по сосуду, что грозит атеросклерозом и значительно повышает риск заболеваний сердца (ишемической болезни, инфаркта) и инсульта.

ЛПВП легко проникают в стенку артерий и легко её покидают, не влияя, таким образом, на развитие атеросклероза. ЛПНП, ЛСП и часть ЛПОНП после окисления задерживаются в стенках артерий. Самые крупные - хиломикроны и большие по размеру ЛПОНП не способны из-за своего размера проникнуть в стенку артерий и также не влияют на развитие атеросклероза.

Для уменьшения «плохих» липопротеинов может быть рекомендована диета (см. ниже) и терапия препаратами из группы статинов (аторвастатин, церивастатин, розувастатин, питавастатин и др.).

Основная диета для снижения липидов (холестерина)
Принципы Источники
Уменьшение общего потребления жира и насыщенных жиров
Сливочное масло, твёрдый маргарин, цельное молоко, твёрдые и мягкие сыры, видимый жир мяса, утка, гусь, обычная колбаса, пирожные, сливки, кокосовое и пальмовое масло
Увеличение потребления высокобелковых продуктов с низким содержанием насыщенных жиров
Рыба, курица, индейка, дичь, телятина
Увеличение сложных углеводов и фруктовых, овощных и злаковых волокон, особенно клетчатки Все свежезамороженные овощи, свежие фрукты, все неполированные зерновые, чечевица, сушёные бобы, рис
Увеличение потребления полиненасыщенных и мононенасыщенных жиров Подсолнечное, кукурузное, оливковое масло, масло из соевых бобов и другие продукты из них, если они не в твёрдом виде (не гидрогенизированы)
Уменьшение холестерина в питании Мозги, почки, язык, яйца (не более 1-2 желтков в неделю), печень (не более 2 раз в месяц)
Уменьшение потребления натрия Соль, глютамат натрия, консервированные овощи и мясо, солёные продукты (ветчина, бекон, копчёная рыба), минеральная вода с большим количеством соли
Источник: Еганян Р.А. Диета и статины в профилактике ишемической болезни сердца (литературный обзор) // РМЖ. 2014. №2. С. 112.
Нарушения обмена липопротеинов в МКБ-10
Различные нарушения обмена липопротеинов в МКБ-10 относят к «Классу IV. Болезни эндокринной системы, расстройства питания и нарушения обмена веществ (E00-E90) », блоку «Е70-Е90 Нарушения обмена веществ », кодам:
  • «E78.0 Чистая гиперхолестеринемия» (семейная гиперхолестеринемия; гиперлипопортеинемия Фредриксона, тип IIa; гипер-бета-липопротеинемия; гиперлипидемия, группа A; гиперлипопротеинемия с липопротеинами низкой плотности)
  • «E78.1 Чистая гиперглицеридемия» (эндогенная гиперглицеридемия; гиперлипопортеинемия Фредриксона, тип IV; гиперлипидемия, группа B; гиперпре-бета-липопротеинемия; гиперлипопротеинемия с липопротеинами очень низкой плотности)
  • «E78.2 Смешанная гиперлипидемия» (обширная или флотирующая бета-липопротеинемия; гиперлипопортеинемия Фредриксона, типы IIb или III; гипер-бета-липопротеинемия с пре-бета-липопротеинемией; гиперхолестеринемия с эндогенной гиперглицеридемией; гиперлипидемия, группа C; тубоэруптивная ксантома; ксантома туберозная)
  • «E78.3 Гиперхиломикронемия» (гиперлипопортеинемия Фредриксона, типы I или V; гиперлипидемия, группа D; смешанная гиперглицеридемия)
  • «E78.4 Другие гиперлипидемии» (семейная комбинированная гиперлипидемия)
  • «E78.5 Гиперлипидемия неуточненная»
  • «E78.6 Недостаточность липопротеинов» (A-бета-липопротеинемия; недостаточность липопротеинов высокой плотности; гипо-альфа-липопротеинемия; гипо-бета-липопротеинемия (семейная); недостаточность лецитинхолестеринацилтрансферазы; танжерская болезнь)
  • «E78.8 Другие нарушения обмена липопротеинов»
  • «E78.9 Нарушения обмена липопротеинов неуточненные»
Медицинские услуги, связанные с определением уровня липопротеинов в крови человека
Приказом Минздравсоцразвития России № 1664н от 27.12.2011 г. утверждена Номенклатура медицинских услуг. В Разделе 9 Номенклатуры предусмотрен ряд медицинских услуг, связанных с определением уровня липопротеинов в крови человека:

На сайте в разделе «Литература » имеются подразделы «Расстройства питания и нарушение обмена веществ, ожирение, метаболический синдром » и «Сердечно-сосудистые заболевания, ассоциированные с заболеваниями ЖКТ », содержащий статьи для профессионалов здравоохранения, затрагивающие данные вопросы.

Результаты исследований уровня липопротеинов в крови дают важную информацию для лечащего врача, но они ни в коей мере не являются диагнозом!



erkas.ru - Обустройство лодки. Резиновые и пластиковые. Моторы для лодок