Собираем осушитель воздуха своими руками: схема и принцип работы. Подключение и эксплуатация пневмоинструмента Пример оборудования сжатого воздуха - установка осушителя для компрессора за воздухосборником

9.1. Осушитель воздуха.

Назначение.

Воздухоосушитель, показанный на рисунках 211 и 212, устанавливается в пневматических тормозных системах для осушения и очищения воздуха, поступающего от воздушного компрессора, а также для регулирования рабочего давления в тормозной системе.

Рисунок 211. Внешний вид и внутреннее строение осушителя воздуха. Обозначения: 1 - Впуск; 2 - Управляющий поршень;3 - Выпуск;4 - Канал;5 - Канал; 6 - Глушитель;

7 - Выпуск;8 - Клапан выхлопа;9 - Камера влагоотделения;10 - Обратный клапан; 11 - Жиклер; 12 - Кольцевой фильтр;13 - Осушающее вещество;14 - Воздушный ресивер регенерации; 15 - Регулировочный винт. Подводы: 1 - Питающий подвод;21 - Отвод (к четырехконтурному защитному клапану); 22 - Отвод (к воздушному ресиверу регенерации); 3 - Атмосферный вывод

Использование воздухоосушителя устраняет необходимость применения влагоудаляющего оборудования на основе дополнительного охлаждения и автоматических кранов слива конденсата, а также дополнительного оборудования впрыска антифриза (спирта).

Преимущества воздухоосушителя по сравнению с традиционным кондиционированием воздуха заключается в следующем.

Отсутствует коррозия элементов тормозной системы, вызываемая конденсатом.

Уменьшается количество отказов в работе узлов и агрегатов тормозной системы вследствие отсутствия конденсата и масляной пленки.

Небольшие затраты на обслуживание.

Регулировка давления происходит в зоне очищенного воздуха, вследствие чего уменьшается вероятность сбоев в работе регулятора давления.

Осушение воздуха происходит за счет адсорбирования влаги на молекулярном уровне осушающим веществом (13). Сжатый воздух пропускают через гранулообразный, высокопористый порошок. В процессе этого любой водяной пар, содержащийся в воздухе, оседает на гранулах. Для регенерации порошка часть осушенного воздуха разряжается в атмосферу, проходя через порошок в обратном направлении. В результате снижения давления, снижается и парциальное давление водяного пара в регенерирующем воздухе (т.е. максимально сухом воздухе), что дает возможность этому воздуху поглотить влагу, осевшую на гранулах.

Рисунок 212. Строение осушителя

Осушение воздуха в фазе нагнетания.

Подаваемый воздушным компрессором воздух проходит через питающий подвод 1 (пневмосхема показана на рисунке 214) сначала через кольцевой фильтр (12), где происходит его предварительная очистка от загрязнения типа нагара и масла. Кроме того, в кольцевом фильтре (12) воздух охлаждается и часть влаги, содержащейся в нем, собирается в камере влагоотделения (9). Затем воздух проходит через гранулообразный порошок (13) - где происходит осушение - к обратному клапану (10); открывает его и проходит через отвод 21 к воздушным ресиверам тормозной системы. Одновременно через жиклер (11) и отвод 22 наполняется воздушный ресивер (14) небольшого размера для регенерации. Очистка воздуха и предварительное удаление влаги в кольцевом фильтре (12) оказывает положительный результат на срок службы и эффективность порошка (13).

Регенерация воздуха в фазе очистки.

При возрастании давления в тормозной системе до соответствующего уровня, так называемого давления отключения, интегрированный регулятор давления открывает клапан сброса (8). Нагнетаемый воздушным компрессором воздух и сжатый воздух из воздухоосушителя выбрасывается в атмосферу через выпуск (7) и атмосферный вывод 3, захватывая при этом накопившуюся влагу, масло и большую часть осевших в фильтре частиц грязи.

Сухой воздух воздушного ресивера регенерации (14) проходит через отвод 22 и жиклер (11) и заполняет все свободное пространство. Проникая через влажные гранулы порошка (13) воздух поглощает влагу осевшую на поверхности гранул прежде, чем через кольцевой фильтр (12) и клапан сброса (8) выйдет в атмосферу.

Обратный запорный клапан (10) препятствует обратному потоку сжатого воздуха из воздушных ресиверов.

Снижение шума.

Благодаря интегрированному глушителю (6), шум, возникающий при открытии клапана сброса (8), значительно снижается. В данном случае применяется многоступенчатый, дроссельный глушитель, конструкция которого предохраняет от скоростного напорного давления, которое может вызвать загрязнение и тем самым ослабить эффективность работы воздухоосушителя.

Работа интегрированного регулятора давления.

За счет давления в ресивере управляющий поршень (2) смещается и воздух проходит через канал (4). Как только давление достигнет значения давления отключения, управляющий поршень (2) смещается вправо и открывает выпуск (3). При этом управляющий поршень (2) закрывает впуск (1) ведущий к вентиляционному отверстию, утечки не происходит. В результате сжатый воздух подается через канал (5) к клапану сброса (8), открывая его. Как только давление ресивера понизится до уровня давления включения, пружина управляющего поршня (2) заставляет его переместиться налево, при этом открывается выпуск (1) и закрывается выпуск (3). Воздух, находящийся над клапаном выхлопа (8), выходит через канал (5), впуск (1) и вентиляционное отверстие (15); клапан очистки закрывается.

Давление отключения и избыточное давление регулятора определяется нагрузкой пружины и перемещением управляющего поршня. Оба значения обеспечивается - в значительной степени независимо друг от друга - посредством регулировочного винта 15.

Предохранительный клапан.

В случае неисправности регулятор давления, предохранительный клапан - состоящий из клапана сброса (8) и пружины сжатия (7) клапана - обеспечивает ограничение давления в ресивере, выпуская поступивший воздух в атмосферу, как только давление достигнет значения давления открытия (аварийного давления).

Работа нагревателя.

Для предотвращения замерзания клапана сброса (8) при неблагоприятных погодных условиях используют электрический нагреватель, устанавливаемый в корпус воздухоосушителя в месте расположения клапана сброса (8) (на рисунках не показан). Нагреватель включается от замка зажигания, температура управляется автоматическим встроенным термостатом. Возможны различные модификации нагревателя. Нагреватель показан на рисунке 213.


Рисунок 213. Внешний вид и внутреннее строение нагревательного элемента

При включенном замке зажигания, подогрев управляется тепловым реле обратного тока. Чтобы при стоянке транспортного средства аккумулятор не разряжался, ток подогрева должен отключаться при отключении замка зажигания. Нагреватель можно встроить дополнительно.

Монтаж.

Общие указания.

Установка воздухоосушителя увеличивает объем тормозной системы (объем воздухоосушителя плюс воздушный ресивер регенерации). Это увеличивает время заполнения тормозной системы примерно от 3% до 7%. Поэтому необходимо проверить выдерживается ли допустимое время заполнения тормозной системы.

Кроме того, средний рабочий цикл регулятора давления при установке воздухоосушителя не должен превышать 50%, поскольку при увеличении времени нагнетания может не хватить времени для регенерации. При рабочем цикле от 50% до 60% установка воздухоосушителя невозможна.

Место монтажа осушителя в тормозной системе транспортного средства представлено на рисунке 214.

Параметры воздушного ресивера регенерации.

При установке воздушного ресивера регенерации необходимо принять во внимание следующее:

Объем воздушных ресиверов тормозной системы;

Избыточное давление регулятора давления;

Давление отключения регулятора давления;

Средний рабочий цикл воздушного компрессора до установки воздухоосушителя.

Диаграмма может использоваться для определения параметров воздушного ресивера регенерации при общих значениях давления отключения и полного объема системы (показано на рисунке 215). Рекомендуемый регенерационный ресивер для среднего рабочего цикла 40% и избыточного давления = 1 бар.

Соединительный трубопровод.

Для соединения воздушного компрессора с воздухоосушителем, и воздухоосушителя с четырехконтурным защитным клапаном, рекомендуется трубопровод 18х1,5мм. Длина трубопровода воздушного компрессора зависит от допустимой температуры воздуха входного отверстия в подводе 1. Обычно используют трубопровод длиной от 4 до 6 метров. Во избежание скопления воды данный трубопровод необходимо располагать с постоянным наклоном к воздухоосушителю. Чтобы предохранить воздухоосушитель от вибрации воздушного компрессора, нагнетательный трубопровод выполняется гибким, при этом он должен обладать стойкостью к большим давлениям.

В нескольких вариантах воздухоосушителей предусмотрены отводные трубки на атмосферном выводе 3 для слива накопившегося конденсата. Однако при этом необходимо учитывать более высокий уровень звука при отключениях. Уменьшение звука достигается путем использования более длинного шланга или отдельного глушителя на шланге.

При всех мероприятиях по уменьшению шума необходимо обеспечить динамический напор на подводе 1, который не превышал бы 0,25 бар, в течение фазы сброса давления (фаза регенерации). Поэтому место для монтажа воздухоосушителя должно выбираться так, чтобы можно было установить устройство с интегрированным глушителем, без отводной трубки на атмосферном выводе 3.

Рисунок 214. Расположение осушителя на пневмосхеме транспортного средства

Дополнительные указания по монтажу.

Перед установкой воздухоосушителя необходимо выполнить следующие условия:

Воздухоосушитель должен иметь давление отключения и избыточное давление такое же, как и ранее используемый регулятор давления (или согласно расчёту).

Необходимо удалить ранее используемый регулятор давления;

Удалить или отключить автоматические краны слива конденсата и устройства антифриза.

Воздухоосушитель устанавливается между воздушным компрессором и многоконтурным защитным клапаном. Допустимый наклон в любую сторону от 0° до 90°, атмосферный вывод 3 может указывать вниз или в сторону.

Воздухоосушитель должен устанавливаться на достаточном расстоянии от теплоизлучающих частей двигателя, системы выхлопа или привода.

Необходимо предусмотреть достаточно свободное пространство для замены патрона с осушающим веществом.

Для закрепления корпуса воздухоосушителя предусмотрены три резьбовых отверстия М12х1.5 глубиной 20.

В редких случаях по причине воздушной вибрации в течение фазы нагнетания, возникают хлопки, которые можно устранить следующими мероприятиями.

Изменить длину трубопровода между воздушным компрессором и воздухоосушителем, учитывая допустимую температуру сжатого воздуха на входе воздухоосушителя.

Демпфирующий ресивер (от 1 до 1,5 литров) установить за воздушным компрессором и перед осушителем.

Рисунок 215. Диаграмма параметров осушителя. Обозначения: 1 - Давление отключения регулятора давления (бар); 2 - Общий объем тормозной системы (литр); 3 - Регенерационный ресивер 4 литра; 4 - Регенерационный ресивер 5 литров; 5 - Регенерационный ресивер 7 литров; 6 - Регенерационный ресивер 9 литров

Использование крана слива конденсата.

Для регулярной проверки эффективности осушения необходимо установить, по крайней мере, один кран слива конденсата в воздушном ресивере за воздухоосушителем. В тормозных системах с различными уровнями давления кран слива конденсата устанавливается в ресивере с максимальным давлением.

Обслуживание.

При утечке сжатого воздуха увеличивается продолжительность фазы наполнения, что оказывает неблагоприятное воздействие на процесс осушения воздуха. Поэтому при обнаружении утечки воздуха необходимо немедленно приступить к ремонту.

В случае, если воздухоосушитель был включен в тормозную схему подержанного транспортного средства, то результаты модернизации можно будет ощутить только после трех недель эксплуатации, поскольку любая влага, находящаяся в тормозной системе перемешана с маслом и поэтому удаляется медленно.

Срок службы сменного осушительного патрона зависит исключительно от степени загрязнения поступающего воздуха. В большинстве случаев, в зависимости от количества масла в подаваемом воздухе, замену сменного патрона достаточно делать через 1-2 года, для Российских условий рекомендация по замене 2 раза в год (циклы лето-зима и зима-лето).

Замена патрона осушителя осуществляется по следующей схеме.

Очистить поверхность воздухоосушителя от грязи.

Воздухоосушитель не должен находиться под давлением. Это можно достичь, если заправить систему сжатым воздухом до отключения регулятора давления или ослабить резьбовое соединение на подводе 1.

Отвинтить осушительный патрон, поворачивая его против часовой стрелки (можно использовать специальный ключ).

Очистить тряпкой поверхность корпуса, при этом грязь ни в коем случае не должна попадать в полость очищенного воздуха (обратный клапан 10).

При замене использовать только новый патрон.

Уплотнения слегка смазать.

Новый осушительный патрон закручивать рукой (крутящий момент затяжки приблизительно 15 Нм).

Снятые (использованные) осушительные патроны необходимо утилизировать отдельно, т. к. внутри патрона содержится осевшее масло.

Проверка предохранительного клапана.

Для проверки предохранительного клапана (показан на рисунке 216) регулятор давления отключается затяжкой полого винта 2 до упора. При давлении "А" на манометре 1 выпускной клапан осушителя должен открыться. В интервале переключения выпускной клапан должен быть герметичным (схема проверки показана на рисунке 217).

Рисунок 216. Предохранительный клапан

Проверка обратного клапана.

При снижении давления до 0 бар на манометре 1, давление на манометре 2 должно остаться прежним.

Настройка регулятора давления.

Установочные винты 1 и 2 установить на размеры 43 и 57 мм. соответственно.

Наполнить ресивер до предусмотренного давления отключения "В" по манометру II (регулировки смотри таблицы в паспорте осушителя). Винт 2 затянуть до упора, а затем отвернуть на 1.25 оборота. При дальнейшей регулировке не разрешается заворачивать этот винт на данную величину. Винт 1 выворачивать до тех пор, пока не откроется выпускной клапан и зафиксировать в этом положении.


Рисунок 217. Схема проверки осушителя

Путём снижения давления в ресивере (манометр II) можно определить интервал переключения "С". Если интервал переключения велик, то необходимо вывернуть винт 2 (влево). При малом интервале переключения винт 2 следует завернуть (вправо). После затяжки контргаек необходимо вновь проверить настройку регулятора и, при необходимости, вновь подрегулировать.

Проверка процесса регенерации.

Наполнить регенерационный баллон (4л) до давления отключения "В" по манометру III. При открытии выпускного клапана осушителя воздуха отключить подачу сжатого воздуха. Давление в регенерационном ресивере должно снизиться до 1 бара в течение "D" сек.

Проверка герметичности.

При подаче воздуха на вывод 1 с давлением "В" допускается максимальная утечка 10 см/мин.

В фазе наполнения системы нагнетаемый компрессором сжатый воздух попадает че-рез вход 1 в камеру А (рис. 6-9). Здесь конденсат, образовавшийся в результате понижения температуры, по каналу С попадает в выпускное отверстие (е).

Воздух через фильтр тонкой очистки (g) и кольцевую камеру (h), встроенные в кар-тридж, стремится к верхней части картриджа с гранулятом (Ь). При прохождении через гранулят (а) из воздуха выводится влага и осаждается в его поверхностном слое (а). Осушенный воздух через обратный клапан (с), вход 21 и подключаемые тормозные приборы попадает в ресиверы тормозной системы. Одновременно осушенный воздух через дроссельное отвер-стие и вход 22 попадает в ресивер регенерации.

Рис. 6-9. Осушитель воздуха 432 410...О

Воздух попадает через отверстие (i) в камеру D и давление отключения воздействует на мембрану (т). После преодоления усилия пружины открывается впускное отверстие (n), a затем поршень (d) под воздействием давления открывает выпускное отверстие (е).

Теперь воздух, нагнетаемый компрессором, стремится в атмосферу через камеру А, канал С и выпускное отверстие 3. Одновременно поршень (d) берет на себя функцию предо-хранительного клапана. При появлении избыточного давления поршень (d) автоматически открывает выпускное отверстие (е).

Если давление в устройстве падает вследствие расхода воздуха ниже величины давле-ния включения, то впускное отверстие (п) закрывается, и давление в камере В снижается пу-тем выпуска воздуха через регулятор. Выпускное отверстие (е) закрывается и процесс осуш-ки начинается снова.

Ресиверы предназначены для накопления сжатого воздуха, производимого компрес-сором , и для питания им приборов пневматического тормозного привода, а также для пита-ния других пневматических узлов и систем автомобиля.

На автомобилях КАМАЗ с колесной формулой 8x8 шесть ресиверов вместимостью по 20 л, причем два из них соединены, образуя резервуар вместимостью 40 л. Ресиверы закреп-лены хомутами на кронштейнах рамы автомобиля. Три ресивера объединены в блок и уста-новлены на едином кронштейне.

Четырехконтурный защитный клапан (рис. 6-10) предназначен для разделения сжатого воздуха, поступающего от компрессора, на четыре контура: для автоматического отключения одного из контуров при нарушении его герметичности и сохранения сжатого воздуха в герметичных контурах; для сохранения сжатого воздуха во всех контурах при на-рушении герметичности питающей магистрали.

Четырехконтурный защитный клапан прикреплен к лонжерону каркаса основания шас-си автомобиля и соединен с питающей трубкой, идущей от регулятора давления через кон-денсационный ресивер. Сжатый воздух, поступающий в четырехконтурный защитный кла-пан из питающей магистрали, при достижении заданного давления открытия, устанавли-ваемого усилием пружин 9 клапанов, открывает клапаны 1, расположенные в верхней крыш-ке защитного клапана, и поступает через выводы в два основных контура. Одновременно сжатый воздух, воздействуя на мембрану 8, поднимает её. После открытия обратных кла-панов 1 сжатый воздух по каналу поступает к клапанам 6, расположенным в нижней крышке защитного клапана, открывает их и через выводы проходит в дополнительный контур, одновременно поднимая нижнюю мембрану.


Рис. 6-10. Четырехконтурный защитный клапан:

1 - клапан; 2 - клапан; 3 - корпус; 4 - толка-тель; 5 - пружина; 6 - клапан; 8 - мембрана; 9 - пружина клапана; 10 - направляющая пружины клапана; 11 - тарелка пружины; 12 - седло; 13 - крышка; 14 - пружина; 15 - колпачок защитный; 17 — регулировоч-ный винт; 21, 23 - пробка транспортная; 25 - винт; 27 - клапан в сборе.

При нарушении герметичности одного из основных контуров давление в этом кон-туре, а также на входе в клапан и в исправном контуре падает до величины давления за-крытия клапана неисправного контура.

Вследствие этого клапан исправного контура и обратный клапан дополнительного контура закрываются, предотвращая уменьшение давления в этих контурах. Таким обра-зом, в исправных контурах будет поддерживаться давление, соответствующее давлению открытия клапана неисправного контура, излишнее количество сжатого воздуха при этом будет выходить через неисправный контур. При отказе в работе дополнительного контура давление падает во всех исправных контурах и на входе в клапан. Это происходит до тех пор, пока не закроется клапан неисправного контура. При дальнейшем поступлении сжатого воздуха в четырехконтурный защитный клапан в контурах будет поддерживаться давление на уровне давления открытия клапана неисправного контура.

При выходе из строя магистрали, идущей от компрессора в четырехконтурный за-щитный клапан, клапаны основных контуров закрываются, предотвращая падение давления во всех контурах.

Крап слива конденсата (рис. 6-11) предназначен для принудительного слива конден-сата из ресивера пневматического тормозного привода, а также для выпуска из него сжатого воздуха при необходимости. Кран слива конденсата ввернут в резьбовую бобышку на ниж-ней части корпуса ресивера. Соединение между краном и бобышкой ресивера уплотнено прокладкой.

Рис. 6-11. Кран слива конденсата:

1 - корпус; 2 - толкатель; 3 - пружина; 4, 5 - кольцо.

Двухсекционный тормозной кран (рис. 6-12) служит для управления исполнительны-ми механизмами двухконтурного привода рабочей тормозной системы автомобиля.

Управление краном осуществляется педалью, непосредственно связанной с тормоз-ным краном.

Кран имеет две независимые секции, расположенные последовательно. Вводы I и II крана соединены с ресиверами двух раздельных контуров привода рабочей тормозной сис-темы. От выводов III и IV сжатый воздух поступает к тормозным камерам. При нажатии на тормозную педаль силовое воздействие передается через толкатель 6, тарелку 9 и упругий элемент 31 на следящий поршень 30. Перемещаясь вниз, следящий поршень 30 сначала за-крывает выпускное отверстие клапана 29 верхней секции тормозного крана, а затем отрывает клапан 29 от седла в верхнем корпусе 32, открывая проход сжатому воздуху через ввод II и вывод III и далее к исполнительным механизмам одного из контуров.

Давление на выводе III повышается до тех пор, пока сила нажатия на педаль 1 не уравновесится усилием, создавае-мым этим давлением на поршень 30. Так осуществляется следящее действие в верхней сек-ции тормозного крана. Одновременно с повышением давления на выводе III сжатый воздух через отверстие А попадает в полость В над большим поршнем 28 нижней секции тормозно-го крана. Перемещаясь вниз, большой поршень 28 закрывает выпускное отверстие клапана 17 и отрывает его от седла в нижнем корпусе. Сжатый воздух через ввод I поступает к выво-ду IV и далее в исполнительные механизмы первого контура рабочей тормозной системы.

Рис. 6-12. Кран тормозной с приводом от педали:

1 - педаль;

2 - регулировочный болт;

3 - защитный чехол;

4 - ось ролика;

6 - толкатель;

7 - опорная плита;

9 - тарелка;

10, 16, 19, 27 - уплотнительные кольца;

11 — шпилька;

12 - пружина следящего поршня;

13, 24 - пружины клапанов;

14, 20 - тарелки пружин клапанов;
15 - малый поршень;

17 - клапан нижней секции;

18 - толкатель малого поршня;

21 - атмосферный клапан;

22 - упорное кольцо;

23 - корпус атмосферного клапана;

25 - нижний корпус;

26 - пружина малого поршня;

28 - большой поршень;

29 - клапан верхней секции;

30 - следящий поршень;

31 - упругий элемент;

32 - верхний корпус.
А - отверстие;

В - полость над большим поршнем; I, II - ввод от ресивера; III, IV - вывод к тормозным каме-рам соответственно задних и перед-них колес.

Одновременно с повышением давления на выводе IV «возрастает давление под порш-нями 15 и 28, в результате чего уравновешивается сила, действующая на поршень 28 сверху. Вследствие этого на выводе IV также устанавливается давление, соответствующее усилию на рычаге тормозного крана. Так осуществляется следящее действие в нижней секции тормоз-ного крана.

При отказе в работе верхней секции тормозного крана нижняя секция будет управ-ляться механически через шпильку 11 и толкатель 18 малого поршня 15, полностью сохраняя работоспособность. При этом следящее действие осуществляется уравновешиванием силы, приложенной к педали 1, давлением воздуха на малый поршень 15. При отказе в работе нижней секции тормозного крана верхняя секция работает как обычно.

Кран управления стояночным тормозом (рис. 6-13) фирмы «WABCO» предназна-чен для приведения в действие вспомогательной тормозной системы, а также стояночной тормозной системы автомобиля без прицепа вместе с тормозными камерами с пружинными энергоаккумуляторами.

Ручной тормозной кран 961 723 1 ..0 для вспомогательной и стояночной тормозных систем применяется вместе с тормозными камерами с пружинными аккумуляторами. Допол-нительное подключение к клапану управления тормозами прицепа обеспечивает передачу тормозного воздействия на прицеп. Имеется положение контроля для проверки эффективно-сти стояночного тормоза автомобиля.

Кран закреплен двумя винтами на дополнительном щитке приборов, справа от води-теля.

Рис. 6-13. Кран управления стояночным тормозом.

Рис. 6-14. Положения рукоятки крана:

А - положение расторможено;

В - промежуточное положение вспомогательное торможение;

С - точка наибольшего усилия на рукоятку;

Д - стояночное положение заторможено(рукоятка зафиксирована);

Е - снятие фиксируемого положения рукоятки;

К - автоматическое возвращение рукоятки в растор-моженное положение.

Принцип действия:

1. Вспомогательный тормоз

В положении «расторможено» клапан (с) удерживает открытым проход между каме-рами А и В и подаваемый через вывод 1 сжатый воздух проходит через вход 21 в камеры пружинного энергоаккумулятора пневмоцилиндра. Одновременно сжатый воздух через контрольный клапан (b) и камеру С попадает к выводу 22 и выводу 43 клапана управления тор-мозами прицепа.

При повороте рукоятки (а) и срабатывании вспомогательной тормозной системы кла-пан (с) закрывает проход между камерами А и В. Сжатый воздух из камер пружинного энер-гоаккумулятора через открывшийся выпуск (d) на выводе 3 выходит в атмосферу. При этом давление в камере В снижается и поршень (е) перемещается вниз под воздействием пружины сжатия (i). После закрытия выпуска при всех положениях торможения достигается положе-ние закрытия, т.е. в камерах пружинного энергоаккумулятора всегда имеется давление, соот-ветствующее необходимому замедлению.

2. Положение парковки

При дальнейшем перемещении рукоятки (а) за подвижный упор достигается положе-ние парковки. Выпускное отверстие (d) остается открытым и сжатый воздух полностью вы-ходит из камер пружинного энергоаккумулятора. В области вспомогательного торможения (от положения «расторможено» до точки подвижного упора) после отпускания рукоятки она автоматически возвращается обратно в положение «расторможено». С помощью основного и дополнительного контрольного клапана, скомбинированных вместе, можно проверить, обес-печивают ли механические силы стояночной тормозной системы тягача удержание автопоез-да на спуске или подъеме при расторможенной тормозной системе прицепа.

3. Контрольное положение

В положении «расторможено» камеры А, В и С соединены между собой и подавае-мый через вывод 21 сжатый воздух проходит к камерам пружинного энерго аккумулятора, а также через вывод 22 к клапану управления тормозами прицепа. При перемещении рукоятки (а) давление в камерах В и С снижается до тех пор, пока не станет равным 0 при достижении подвижного упора. При перемещении за подвижный упор рукоятка (а) встает в промежуточ-ное положение (положение стояночного тормоза). При дальнейшем перемещении рукоятки в контрольное положение имеющийся в камере А сжатый воздух проходит через открытый клапан (Ь) в камеру С. При выпуске сжатого воздуха через вывод 22 происходит управление тормозным краном прицепа, который отменяет пневматическое торможение прицепа, осуще-ствляющееся во время торможения вспомогательным или стояночным тормозом. Теперь гру-зовой автопоезд удерживается только благодаря механической силе пневмокамер пружинно-го энергоаккумулятора тягача. Как только рукоятка (а) отпускается, она снова возвращается обратно в положение стояночного тормоза, при котором срабатывает тормозная система прицепа.

Кран пневматический с кнопочным управлением предназначен для подачи и отклю-чения сжатого воздуха. Он управляет пневмоцилиндрами вспомогательной тормозной сис-темы.

Устройство пневматического крана показано на рис. 6-15. В атмосферном выводе II пневматического крана установлен фильтр 20, предотвращающий проникновение в кран гря-зи и пыли. Сжатый воздух в пневматический кран поступает через вывод I. При нажатии на кнопку 8 толкатель 9 перемещается вниз и своим выпускным седлом давит на клапан 15, ра-зобщая вывод III с атмосферным выводом П. Затем толкатель 9 отжимает клапан 15 от впу-скного седла корпуса, открывая тем самым проход сжатому воздуху от вывода I к выводу III и далее в магистраль к пневматическому исполнительному механизму.

При отпускании кнопки 8 толкатель 9 под действием пружины 13 возвращается в верхнее положение. При этом клапан 15 закрывает отверстие в корпусе 2, прекращая даль-нейшее поступление сжатого воздуха в вывод III, а седло толкателя 9 отрывается от клапана 15, сообщая тем самым вывод III с атмосферным выводом II. Сжатый воздух из вывода III через отверстие А в толкателе 9 и вывод II выходит в атмосферу.

Рис. 6-15. Кран пневматический:

1, 11, 12 - кольца упорные; 2 - корпус; 3, 5, 10 - кольца уплотнительные; 4 - тарелка пружины штока; 6 - втулка; 7 - чехол защитный; 8 - кнопка; 9 - толкатель; 13 - пружина толкателя; 15 - клапан: 16 - пружина клапана; 17 - направляющая клапа-на; 18 - заклепка; 19 - пробка транспортная; 20 - фильтр. 1 - от питающей магистрали; II - в атмосферу; III - в управ-ляющую магистраль.

Клапаны ускорительные предназначены для уменьшения времени срабатывания привода запасной тормозной системы (клапан 25, рис.6-1) и привода рабочей тормозной сис-темы передних мостов (клапан 27, рис. 6-1) за счет сокращения длины магистрали впуска сжатого воздуха в пружинные энергоаккумуляторы и выпуска воздуха из них непосредст-венно через ускорительный клапан в атмосферу. Клапан 25 установлен на внутренней сторо-не лонжерона рамы автомобиля в зоне задней тележки. Клапан 27 установлен на кронштей-не, закрепленном на первой поперечине рамы.

Устройство ускорительного клапана показано на рис. 6-16. К выводу III подается сжа-тый воздух из ресивера. Вывод IV соединен с управляющим прибором — тормозным краном обратного действия с ручным управлением, а вывод I — с пружинным энергоаккумулятором. При отсутствии давления в выводе IV поршень 3 находится в верхнем положении. Впускной клапан 4 закрыт под действием пружины 5, а выпускной клапан 1 открыт. Через открытый выпускной клапан 1 и вывод I пружинные энергоаккумуляторы сообщаются с атмосферным выводом И. Автомобиль заторможен пружинными энергоаккумуляторами.

При подаче сжатого воздуха к выводу IV от ручного тормозного крана он поступает в надпоршневое пространство. Поршень 3 под действием сжатого воздуха движется вниз, сна-чала закрывает выпускной клапан 1 и затем открывает впускной клапан 4. Заполнение ци-линдров пружинных энерго аккумуляторов, присоединенных к выводу I, производится сжа-тым воздухом от ресивера через вывод III и открытый впускной клапан 4.

Рис. 6-16. Клапан ускорительный:

1 - клапан выпускной; 2 - корпус верхний; 3 - пор-шень; 4 - клапан впускной; 5 - пружина; 6 - корпус клапанов; 7, 8, 9, 10 - О-образное кольцо; 11 - колпа-чок направляющий в сборе; 12 - пробка транспортная; 13 - корпус нижний; 14 - кольцо упорное; 15, 16 — колпачок; 17 - болт; 18 - шайба; 19 - гайка. Выводы:

I - к двухмагистральному клапану;

II - атмосферный вывод;

III - от ресивера;

IV - от крана управления стояночной тормозной сис-темой.

Пропорциональность управляющего давления на выводе IV и выходного давления на выводе I осуществляется поршнем 3. При достижении в выводе I давления, соответствующе-го давлению на выводе IV, поршень 3 перемещается вверх до момента закрытия впускного клапана 4, движущегося под действием пружины 5. При снижении давления в управляющей магистрали (то есть на выводе IV) поршень 3 вследствие более высокого давления на выводе I перемещается вверх и отрывается от выпускного клапана 1. Сжатый воздух из пружинных энергоаккумуляторов через открытый выпускной клапан I, полый корпус 6 клапанов и атмо-сферный клапан выходит в атмосферу, автомобиль затормаживается.

Клапан двухмагистральный (рис. 6-17) служит для питания пневмоаппаратов от од-ной из двух магистралей сжатого воздуха, подсоединенных к клапану.

При подаче воздуха от регулятора давления клапан 3 перемещается и закрывает ввод магистрали от ресиверов, сжатый воздух проходит к крану управления стояночной тормоз-ной системой. При использовании сжатого воздуха из ресиверов клапан закрывает ввод ма-гистрали со стороны регулятора давления. Сжатый воздух также проходит к крану управле-ния стояночной тормозной системой. К клапану с одной стороны подведена питающая маги-страль от регулятора давления, с другой — от ресиверов контура III. Третий вывод клапана соединен с вводом крана управления стояночной тормозной системой.

Таким образом, клапан обеспечивает подачу сжатого воздуха на ввод ускорительного клапана из ресиверов, а при отсутствии в них воздуха — из управляющей магистрали крана управления стоя-ночной тормозной системой.

Рис. 6-17. Двухмагистральный перепускной клапан:

1 - кольцо уплотнителыюе; 2 - корпус; 3 - клапан; 4 - встав-ка; 5 - пружина.

Тормозные камеры в рабочей тормозной системе являются исполнительными меха-низмами, которые преобразуют энергию сжатого воздуха в работу по приведению в действие тормозного механизма автомобиля. В зависимости от исполнения предназначается для меха-нической или гидравлической передачи усилия.

В первом контуре применяются тормозные камеры типа 30. Цифра 30 в обозначе-нии типа камеры указывает активную площадь мембраны камеры в квадратных дюймах при нормальном ходе штока тормозной камеры. Во втором контуре используются тормозные ка-меры типа 30/24 с пружинными энергоаккумуляторами. Тормозные камеры безфланцевые крепятся с помощью болтов, приваренных к корпусу камеры и гаек к кронштейну на пово-ротном кулаке (передние тормозные камеры) или на тормозном механизме.

Камера тормозная с пружинным энергоаккумулятором типа 30/24 предназначена для приведения в действие тормозных механизмов колес задней тележки автомобиля при включении рабочей, запасной и стояночной тормозных систем.

Пружинные энергоаккумуляторы вместе с тормозными камерами установлены на кронштейны разжимных кулаков тормозных механизмов задней тележки и закреплены дву-мя гайками с болтами.

Цилиндры пневматические предназначены для приведения в действие механизмов вспомогательной тормозной системы. На автомобилях КАМАЗ установлено три пневматиче-ских цилиндра:

Два цилиндра диаметром 35 мм и ходом поршня 65 мм (рис. 6-18 а) для управления дроссельными заслонками, установленными в выпускных трубопроводах двигателя;

Один цилиндр диаметром 30 мм и ходом поршня 25 мм (рис. 6-18, б) для управле-ния рычагом регулятора топливного насоса высокого давления.

Пневматический цилиндр 35x65 шарнирно закреплен на кронштейне при помощи пальца. Шток цилиндра резьбовой вилкой соединяется с рычагом управления заслонкой. При включении вспомогательной тормозной системы сжатый воздух от пневматического крана через вывод в крышке 1 (рис. 6-18, а) поступает в полость под поршнем 2. Поршень 2, пре-одолевая силу возвратных пружин 3, перемещается и воздействует через шток 4 на рычаг управления заслонкой, переводя ее из положения «ОТКРЫТО» в положение «ЗАКРЫТО». При выпуске сжатого воздуха поршень 2 со штоком 4 под действием пружин 3 возвращается в исходное положение. При этом заслонка поворачивается в положение «ОТКРЫТО».

Рис. 6-18. Пневматические цилиндры привода заслонки механизма вспомогательной тормозной системы (а) и привода рычага остановки двигателя (б):

1 - цилиндр; 2 - поршень; 3 - втулка; 4 - пружина; 5 - упор; 6 - кольцо уплотнительное; 7 - крышка цилиндра; 8 - О-образное кольцо; 9 - заклепка; 10 - пробка транспортная; 11 - пружина.

Пневматический цилиндр 30x25 шарнирно установлен на крышке регулятора топ-ливного насоса высокого давления. Шток цилиндра резьбовой вилкой соединен с рычагом регулятора. При включении вспомогательной тормозной системы сжатый воздух от пневма-тического крана через вывод в крышке 1 цилиндра (рис. 6-18, б) поступает в полость под поршнем 2. Поршень 2, преодолевая силу возвратной пружины 3, перемещается и воздейст-вует через шток 4 на рычаг регулятора топливного насоса, переводя его в положение нулевой подачи. Система тяг педали управления подачей топлива связана со штоком цилиндра таким образом, что при включении вспомогательной тормозной системы педаль не перемещается. При выпуске сжатого воздуха поршень 2 со штоком 4 под действием пружины 3 возвращает-ся в исходное положение.

Клапан контрольного вывода (рис. 6-19) предназначен для присоединения к приво-ду контрольно-измерительных приборов с целью проверки давления, а также для отбора сжатого воздуха.

Таких клапанов на автомобилях КАМАЗ установлено пять — во всех контурах пнев-матического тормозного привода. Для присоединения к клапану следует применять шланги и измерительные приборы с накидной гайкой Ml6x1,5.

При измерении давления или для отбора сжатого воздуха отвернуть колпачок 4 кла-пана и навернуть на корпус 2 накидную гайку шланга, присоединенного к контрольному ма-нометру или какому-либо потребителю. При наворачивании гайка перемещает толкатель 5 с клапаном, и воздух через радиальные и осевое отверстия в толкателе 5 поступает в шланг. После отсоединения шланга толкатель 5 с клапаном под действием пружины 6 прижимается к седлу в корпусе 2, закрывая выход сжатому воздуху из пневмопривода.

Рис. 6-19. Клапан контрольного вывода:

1 - корпус; 2 - толкатель; 3 - гайка-барашек; 4 - лента; 5 - пружина; б, 7, 8 - кольцо.

Датчик падения давления (рис. 6-20) представляет собой пневматический выключа-тель, предназначенный для замыкания цепи электрических ламп и звукового сигнала (зумме-ра) аварийной сигнализации при падении давления в ресиверах пневматического тормозного привода. Датчики с помощью наружной резьбы на корпусе вворачиваются в ресиверы всех контуров тормозного привода, а также в арматуру контура привода стояночной и запасной тормозных систем и при их включении загораются красная контрольная лампочка на щитке приборов и лампы сигнала торможения.

Датчик имеет нормально замкнутые центральные контакты, которые размыкаются при повышении давления выше 441,3-539,4 кПа (4.5-5,5 кгс/см).

Рис. 6-20. Датчик падении давления:

1 - корпус: 2 - мембрана; 3 - контакт неподвижный:

4 - толкатель; 5 - контакт подвижный; 6 - пружина;

7 - винт регулировочный: 8 - изолятор.

Рис. 6-21. Датчик включения сигнала торможения:

1 - корпус; 2 - мембран а; 3 - контакт подвижный; 4 - пружина; 5 - вывод неподвижного контакта; 6 - кон-такт неподвижный; 7 - крышка.

При достижении в приводе указанного давления мембрана 2 под действием сжатого воздуха прогибается и через толкатель 4 воздействует на подвижный контакт 5. Последний. преодолев усилие пружины 6, отрывается от неподвижного контакта 3 и разрывает электри-ческую цепь датчика. Замыкание контакта, а следовательно, включение контрольных ламп и зуммера, происходит при снижении давления ниже указанной величины.

Датчик включения сигнала торможения (рис. 6-21) представляет собой пневмати-ческий выключатель, предназначенный для замыкания цепи электрических сигнальных ламп при торможении. Датчик имеет нормально разомкнутые контакты, которые замыкаются при давлении 78,5-49 кПа (0,8-0,5 кгс/см 2) и размыкаются при уменьшении давления ниже 49-78,5 кПа (0,8-0,5 кгс/см 2). Датчики установлены.в магистралях, подводящих сжатый воздух к исполнительным механизмам тормозных систем.

При подводе сжатого воздуха под мембрану последняя прогибается, и подвижный контакт 3 соединяет контакты 6 электрической цепи датчика.

Клапан управления тормозными системами прицепа с двухпроводным приводом (рис.6-22) предназначен для приведения в действие тормозного привода прицепа (полупри-цепа) при включении любого из раздельных контуров привода рабочей тормозной системы тягача, а также при включении пружинных энергоаккумуляторов привода запасной и стоя-ночной тормозных систем тягача.

Клапан крепится на раме тягача двумя болтами.

Рис. 6-22. Клапан управления

Влагоотделитель для компрессора – устройство, которое является частью блока подготовки воздуха при его подаче в систему. Подобный фильтр необходим по причине того, что повышенная влажность пагубно влияет на различные детали и компоненты как самого компрессора, так и всей системы в целом. Фильтр для отделения влаги можно создать своими руками или приобрести в специализированном магазине. Все зависит от того, в какой среде он будет использоваться, каких параметром следует достигнуть при фильтрации воздуха, какие требования предъявляются.

Принцип работы

Существует довольно много различных вариантов исполнения, так как фильтр может проводить отделение влаги несколькими методами. Классический влагоотделитель для компрессора работает по следующему принципу:

  1. подаваемый воздух из окружающей среды сначала проходит через специальную камеру, которая имеет высокую степень изоляции. Фильтр для отделения влаги может иметь существенные размеры;
  2. при попадании в рассматриваемую камеру поток закручивается. Водоотделитель имеет специальные лопасти, которые создают вихревое движение потока в камере. Естественные процессы определяют то, что на поверхности лопасти образуется конденсат. На данном этапе фильтр проводит предварительную очистку воздуха;
  3. после завершения начального этапа поток под действие все той же центробежной силы отправляется в следующую камеры, где установлен пористый фильтр. Он способен задержать все мелкие частицы и оставшуюся влагу. В отличии от грубой очисти, этот фильтр должен периодически заменяться, так как со временем проходит засорение пор.

Стоимость вышеприведенных вариантов исполнения очень велика. Поэтому следует рассматривать требования, которые предъявляются системой к качеству подаваемого воздуха. Если не нужно достигать подобного качества потока, то целесообразно приобретать более дешевые варианты исполнения. В обычных системах подачи воздуха можно использовать самодельный вариант исполнения для компрессора. Сделать своими руками подобную конструкцию можно, самодельный фильтр будет иметь меньшую эффективность, но его стоимость будет незначительной, ремонтопригодность позволит исключить вероятность возникновения больших затрат при обслуживании.

Область применения

Где же используется рассматриваемое устройство? Область применения влагоотделителя для компрессора весьма обширна. Его устанавливают в системы автомобилей, оборудования сферы машиностроения, в авиастроении и так далее. В данном случае рассмотрим использование влагоотделителя для компрессора, используемого при покраске. В данном случае можно использовать самодельный или промышленный вариант исполнения.

Достигнуть высокого качества покраски различных поверхностей можно следующим образом:

  1. Нужно правильно настроить компрессор и грамотно подобать под него влагоотделитель.
  2. При использовании влагоотделителя с высоким показателем эффективности снизить содержание влаги в воздушной массе можно на 90%.
  3. Снижение количества влаги в воздухе позволяет существенно повысить показатель объема воздушной массы.
  4. Если в влажность будет высокой, то происходит образование кратеров. Это связано с тем, что при взаимодействии масла, кислорода и влаги образуются пузырьки, которые значительно снижают качество получаемой поверхности.

Для низкокачественной покраски можно использовать влагоотделители, созданные своими руками. Однако если нужно достигнуть высокого результата нужно использовать промышленные варианты исполнения, которые способны провести снижение влажности воздуха не менее чем на 70%.

На что стоит обратить внимание?

Как и при создании своими руками влагоотделителя для компрессора, таки при покупке следует обратить внимание на следующие показатели:

  1. Количество этапов очистки – важный показатель. Как правило, фильтрация осуществляется за два этапа: первый отделяет большую часть воды и крупные частицы, второй – более тонкая очистка. Если будет только первый этап, то качество воздуха будет низким. Если конструкция имеет только тонкую очистку, то есть вероятность ее очень быстрого засорения.
  2. Пропускная способность определяет возможность использования влагоотделителя в системе с компрессором, а также его производительность. Если пропускная способность будет ниже установленной нормы, то он быстро выйдет из строя, так как не будет справляться с нагрузкой.
  3. Глубина очистки. Как правило, этот показатель указывается в микронах. К примеру, показатель в 5 микрон говорит о том, что устройство способной провести отсеивание частиц, который имеют больший размер этого показателя. Мелкие частицы, менее 5 микрон, пройдут через установленные элементы.

В некоторых случаях производители указывают то, насколько можно снизить влажность кислорода при пропускании его через рассматриваемую конструкцию. Своими руками можно создать влагоотделитель для компрессора, который будет наполовину снижать влажность, проводить задержку частиц в несколько десятков или сотен микронов. При этом некоторые элементы все же придется приобретать, к примеру, блок тонкой очистки.

На все грузовые автомобили Камского производства устанавливается компрессор. КамАЗ 5320 не исключение. Данный элемент не только качает воздух, но и является источником скопления масла и влаги в системе. Поэтому для его нормальной работы устанавливают дополнительно влагоотделитель (КамАЗ). Принцип работы, его устройство и разновидности - далее в нашей статье.

О тормозной системе

Во всех современных грузовиках сейчас используется система с Он также является источником для других технологических узлов. Использование пневматической системы обуславливается ее высокой надежностью, универсальностью применения и эффективностью.

Данная конструкция устроена одинаково. Она обязательно включает в себя компрессор. КамАЗ также комплектуется ресиверами, трубопроводами, исполнительными элементами и клапанами. Кроме этого, в устройство данной системы входит влагоотделитель. КамАЗ (Евро-3) оснащается им еще на заводе.

Назначение

Данный элемент выполняет функцию удаления масла и влаги, наличие которой может сильно повлиять на дальнейшую работу компрессора. Кстати, он является основой любой Именно через него происходит нагнетание воздуха под высоким давлением.

Однако в системе есть элементы, нуждающиеся в смазке. Поэтому во время работы в середине устройства скапливается воздух. А ввиду того, что кислород для системы забирается из атмосферы, он содержит в себе определенный процент влаги. Ее наличие в магистралях просто недопустимо. Малейшие капли воды, оседающие на поверхности клапанов, быстро выводят из строя компрессор. КамАЗ будет плохо тормозить. Также наличие влаги ускоряет коррозийные процессы. Внешне эти факторы заметить крайне сложно, это возможно лишь тогда, когда на панели приборов загорится лампа аварийного давления воздуха.

Поэтому в конструкции предусматривается влагомаслоотделитель. КамАЗ, укомплектованный таким устройством, работает в любых условиях, вне зависимости от влажности воздуха на улице. Он, проходя через данное устройство, очищается от масла и осушается от влаги. Только после этого проникает в ресиверы, где затем направляется на

Стоит отметить, что устройство не может на 100 процентов очистить воздух от воды и масла. Некоторый процент все-таки остается в нем. Дополнительным фильтром здесь служит сам ресивер. Попадая в них из трубопроводов, воздух расширяется. При этом его температура падает. А оставшаяся влага конденсируется, оседая на стенках бака. Однако при длительной эксплуатации специалисты рекомендуют производить профилактику системы - вручную открывать специальный стравливающий клапан.

Разновидности

На сегодняшний день влагоотделитель КамАЗа может быть двух типов: с РДВ - встроенным регулятором давления воздуха ли без него. Данные устройства имеют одинаковое назначение. Однако их конструкция отличается. Считается, что устройства с встроенным регулятором давления воздуха обеспечивают более надежную работу пневмосистемы. Кроме этого, в их конструкции может присутствовать радиатор. В таких элементах используется комбинированный тип фильтрации воздуха - термо- и просто динамический. Влагоотделитель КамАЗа без радиатора имеет только последний тип осушения. Сам элемент являет собой тонкостенную ребристую трубу, свернутую в 5-6 витков.

Способ подогрева

Фильтр-влагоотделитель различается и по способу подогрева. В зависимости от него он может быть электрическим или механическим. Конструкция устройств первого типа предусматривает наличие встроенного нагревательного элемента. Он растормаживает клапаны во время эксплуатации зимой. Что касается устройств с механическим подогревом, то они функционируют от энергии горячего воздуха. Также в их конструкции есть незамерзающие клапаны. Они обеспечивают слаженную работу системы до момента растормаживания.

Устройство

Вне зависимости от типа устройство данных элементов одинаковое. В основе фильтр-влагоотделитель имеет металлический корпус с направляющим аппаратом и клапаном сброса влаги. Также здесь имеются дополнительные клапаны: предохранительный, обеспечивающий бесперебойную работу устройства при замерзании влаги в радиаторе и обратный. Последний предотвращает поступление воздуха под давлением из системы обратно к компрессору.

Стоит отметить, что влагомаслоотделитель КамАЗа в зависимости от типа конструкции имеет разные клапана сбора конденсата. На устройствах без регулятора давления воздуха это мембранный золотниковый вариант. Он открывается благодаря разряжению воздуха при срабатывании регулятора. Что касается устройства с РДВ, то в их конструкции предусмотрен один клапан пружинного типа. Он открывается одновременно с регулятором давления.

Как работает влагоотделитель КамАЗа с регулятором?

Алгоритм работы устройства имеет некие особенности в механизме сбора влаги. Компрессор, качающий воздух, направляет его по трубопроводам в радиатор. Там он осушается и охлаждается. Затем воздух проникает в канал спиральной формы, расположенный между корпусом влагоотделителя и регулятора. Здесь он проходит процедуру очистки. Далее через обратный клапан он снова поступает в систему, но уже в пригодном для эксплуатации виде.

Сама влага в это время скапливается на дне корпуса аппарата. Достигнув крайнего значения, конденсат удаляется. Одновременно открывается клапан регулятора, который в свою очередь задействует клапан сброса влаги. В это время происходит продувка радиатора. Внутри него вычищается вся влага вод высоким давлением.

Проблемы в работе

Они могут возникнуть в зимний период. При отрицательной температуре, во время долгого простоя, клапан сброса может просто замерзнуть. Тогда регулятор давления работает как предохранительный элемент, обеспечивая сброс давления при достижении критического уровня. Однако при запуске компрессора горячий воздух поступает во влагоотделитель. КамАЗ, работая на холостых около 5-10 минут, будет пригоден к эксплуатации, так как этот воздух при своей температуре полностью отогревает клапан и восстанавливает его работу.

Преимущества

Что касается плюсов использования устройств с регулятором давления, то здесь нужно отметить высокую эффективность удаления влаги. Обычное устройство без регулятора, особенно в зимний период времени, не в состоянии полностью очистить воздух от масла и влаги из-за плохого срабатывания клапана. Это значительно снижает эффективность работы пневматической тормозной системы.

В устройстве с регулятором удаление влаги сопровождается продувкой радиатора и корпуса под давлением - влага испаряется и отлично сбрасывается в атмосферу. Поэтому, перед тем как установить влагоотделитель на КамАЗ, нужно разобраться в принципе работы обоих типов элементов. Как видите, наиболее подходящий вариант - с регулятором давления воздуха. Такой устанавливается на большинство грузовиков-иномарок. Поэтому его наличие на отечественном КамАЗе буде вовсе не лишним.

Правила эксплуатации

Во время использования данный элемент требует минимального обслуживания. Но мы отметим несколько особенностей, знание которых значительно продлит ресурс влагомаслоотделителя. Во-первых, нужно правильно установить его. Сливной шланг должен быть направлен прямо вниз. Так, собранный конденсат будет прямиком и беспрепятственно сбрасываться наружу. Если штуцер сдвинут вбок, даже при высоком давлении будет оставаться часть влаги, которая спровоцирует коррозионные процессы внутри элементов.

Также не забывайте про герметичность системы. Если ставится отделитель, бывший в использовании, желательно приобрести ремкомплект и поменять уплотнительные элементы. В остальном же данное устройство имеет высокую надежность и эффективность работы, защищая резиновые диафрагмы тормозных камер от пагубного влияния масла, а клапаны - от коррозии и замерзания зимой.

Неисправен он может быть только при разгерметизации. Например, если он начал часто «травить» воздух. В таком случае проблема решается покупкой ремкомплекта. Он включает в себя набор пружин, и манжеты. Кстати, при неисправности последней устройство постоянно «шипит», пропуская часть воздуха наружу под давлением.

Бытовой осушитель воздуха – это переносной электроприбор, который предназначен для снижения и поддержания комфортной относительной влажности воздуха в помещениях дома или квартиры.

Для быта обычно выпускаются осушители воздуха, работающие на принципе охлаждения воздуха и конденсации из него воды с помощью встроенного компрессора с испарителем, как в холодильниках. Поэтому они называются конденсационными. Такие осушители обладают высокой производительностью и способны быстро создать и постоянно поддерживать в помещении комфортную для человека, домашних животных и имущества относительную влажность воздуха в пределах 40-60%.

Устройство и принцип работы
конденсационного осушителя воздуха

Если из корпуса холодильника убрать шкаф для хранения продуктов с морозилкой, а все остальное разместить в отдельном корпусе, то получится конденсационный осушитель воздуха, который представлен на фотографии.

Рассмотрим устройство и принцип работы осушителя воздуха на примере немецкой модели «Kaut K20», схема которого приведена на чертеже.

Влажный воздух из помещения через решетку на лицевой панели осушителя за счет вращения лопастей вентилятора всасывается в корпус осушителя. Далее воздух проходит через теплообменник, в котором из него удаляется вода, проходит через фильтр и возвращается обратно в помещение уже сухим.

Теплообменник состоит из двух зон – теплой и холодной. Сначала влажный воздух попадает в нагретую зону теплообменника и подогревается. Далее проходит через холодную зону теплообменника и охлаждается. Так как разница температур между подогретым воздухом и холодной зоной теплообменника большая, то вода из воздуха осаждается на его ребрах (конденсируется) и по стенкам стекает в лоток для конденсата.

Электрическая схема и принцип работы

Осушитель воздуха к электрической сети переменного тока 220 В подключается с помощью электрической вилки типа С6. Для индикации поступления питающего напряжения на схему на лицевой панели установлен индикатор, выполненный на неоновой лампочке HL1.

При работе осушителя из воздуха удаляется вода, которая собирается в водосборном резервуаре объемом 5,5 л. Для исключения перелива воды установлен датчик ее уровня S, который в случае наполнения резервуара отключает осушитель и включает неоновую лампочку-индикатор наполнения резервуара HL2, установленную на лицевой панели. Резисторы R1 и R2 служат для ограничения тока, протекающего через неоновые лампочки. Датчик уровня воды выполнен на механическом микропереключателе.


Требуемый уровень влажности воздуха задается и поддерживается благодаря гиростату (Н) типа TW2001R-A, способного регулировать относительную влажность в диапазоне от 10% до 80%. Управление гиростатом осуществляется с помощью ручки, расположенной на лицевой панели осушителя. При снижении относительной влажности до заданного уровня гиростат отключает подачу питающего напряжения на вентилятор и компрессор.

Для обеспечения циркуляции воздуха через теплообменник служит вентилятора М, который имеет два режима скорости. При замкнутом выключателе I, питающее напряжение подается без ограничения и лопасти вентилятора вращаются с максимальной скоростью. Для снижения уровня шума, например, при работе осушителя в ночное время, установлен токоограничивающий резистор R3, благодаря которому при размыкании выключателя I скорость лопастей снижается. Стоит заметить, что в таком режиме производительность осушителя тоже снижается.

Для исключения образования ледяной шубы на теплообменнике в схеме имеется блок управления, а в теплообменник вмонтирован датчик температуры. Если температура охлаждающей секции теплообменника приближается к 0°С, то блок управления отключает компрессор на время, пока температура не повысится.

Как работает компрессор в осушителе?

Компрессор представляет собой герметичный металлический корпус цилиндрической формы. В нем установлен электродвигатель с системой клапанов, которые при работе электродвигателя создают на выходе высокое давление. В качестве хладагента в компрессорах используется газ фреон или другие с подобными физическими характеристиками, например R134a.

С выхода компрессора нагретый и принявший жидкое состояние от сжатия фреон по медной трубке, сначала проходит через зону теплообменника подогрева воздуха, где отдает свое тепло. Выходя из зоны подогрева, трубка сужается до внутреннего диаметра 0,6-0,8 мм, образуя капилляр длиной более полметра. Далее трубка опять расширяется до прежнего диаметра.


Выходя из капиллярной трубки фреон, направляется в охлаждающую зону теплообменника. Из-за большой разности диаметров трубок возникает перепад давления. В результате фреон вскипает и переходит в газообразное состояние, поглощая при этом большое количество тепла, которое отбирается от охлаждающей зоны теплообменника. После этого фреон возвращается в компрессор, где газ опять сжимается и направляется в теплообменник. Пока включен электродвигатель компрессора циркуляция фреона через теплообменник будет происходить постоянно.

По такому принципу работает компрессор в любом домашнем холодильнике, только нагревающаяся часть теплообменника устанавливается на задней стенке его шкафа, а охлаждающая (морозилка) внутри него.

Внимание! При ремонте осушителя воздуха и любых других электроприборов, включенных в бытовую сеть, следует соблюдать осторожность. Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током. Не забывайте вынимать вилку из розетки!

Ремонт осушителя воздуха своими руками

Изучив принцип работы и электрическую схему осушителя воздуха можно приступать к его самостоятельному ремонту.

Первым делом нужно убедиться, что водосборный резервуар для воды не переполнен. Далее с помощью ручки гиростата выставить требуемый уровень влажности, например, установив указатель на цифру 6 (относительная влажность 60%). Кнопка переключения скорости вентилятора должна находиться в утопленном положении. Затем вставить вилку осушителя в розетку, должен загореться зеленый индикатор подключения к сети HL1 и не гореть красный индикатор переполнения резервуара HL2. Лопасти вентилятора должны завращаться и заработать компрессор.

Если осушитель исправен, то через 5-10 минут работы из его задней решетки должен поступать холодный воздух, а в резервуаре появится вода. В противном случае осушитель неисправен и требуется его ремонт.

Поиск неисправности любого электроприбора всегда начинается с розетки, вилки и сетевого шнура. Если светится зеленый индикатор, то с этим все в порядке. В противном случае необходимо убедиться в исправности розетки, вилки и сетевого шнура. Для проверки розетки достаточно вставить в нее вилку любого электроприбора, например, настольной лампы.

Как разобрать осушитель

Если осушитель не работает и светит красный индикатор, а в резервуаре воды нет, то, неисправность связана с микропереключателем S. Для его проверки и ремонта необходимо осушитель разобрать.

Для того чтобы добраться до деталей и узлов необходимо снять переднюю и заднюю панели, и верхнюю крышку. Разборку удобнее начинать с задней панели. Для этого нужно сначала выкрутить саморез, который удерживает панель со стороны дна.

Затем выкрутить еще четыре самореза, расположенные непосредственно в потайных отверстиях панели и ее снять. Заодно стоит проверить состояние воздушного фильтра.

Далее нужно отвинтить четыре винта в потайных отверстиях на передней панели и аккуратно снять ее, чтобы не повредить провода, идущие от органов управления. После этого останется только раздвинуть нижние края П-образной крышки, и снять ее, сдвинув вверх.

Теперь все узлы станут доступны для проверки и ремонта. На представленной фотографии нанесены надписи с указанием места нахождения всех основных узлов.

Первым делом нужно внимательно осмотреть все разъемные соединения. На них не должно быть изменений цвета покрытий и почернений. Далее проверить надежность посадки разъемов на клеммы. Для этого нужно попробовать каждый из разъемов подергать, взявшись за него пальцами, разъемы на клеммах должны держаться намертво. В случае, если разъем легко снялся, то нужно его поджать плоскогубцами.

Проверка индикатора и датчика уровня воды резервуара

В первую очередь необходимо убедиться, что толкатель датчика воды свободно перемещается. Для этого нужно надавить пальцем руки на черную клавишу, которая находится в верхнем правом углу отсека резервуара воды.

При нажатии и отпускании клавиша должна легко утапливаться и возвращаться в исходное положение. При этом должен раздаваться характерный щелчок работы микропереключателя. Индикатор красного цвета при нажатии на клавишу должен гаснуть, а при отпускании – загораться. Если что-то не так, то нужно снять датчик и выяснить, почему он не работает.

Датчик уровня воды установлен со стороны вентилятора и находится правее его гасящего сопротивления. Для того чтобы добраться до датчика достаточно открутить пару саморезов и разъединить две половинки корпуса, в котором микропереключатель установлен. На фото переключатель голубого цвета.

На последнем этапе проверки нужно проверить с помощью мультиметра или тестера, включенного в режим измерения сопротивления, исправность внутренних контактов микропереключателя.

Проверка исправности гиростата

Если датчик уровня воды и сигнальный индикатор исправны, то следующим элементом, управляющим работой компрессора является гиростат типа TW2001R-A.


Гиростат представляет собой металлическую коробку, в которой размещен датчик влажности, механически связанный с электрическими контактами. Это практически программируемый выключатель, замыкающий или размыкающий контакты при достижении заданного уровня влажности.

Для проверки гиростата достаточно выставить с помощью ручки на панели управления низкий уровень влажности и включить осушитель. Если лопасти вентилятора завращались, значит, гиростат работает нормально. Если вентилятор не заработал, то возможно он неисправен. Для проверки вентилятора надо закоротить выводы гиростата или подать напряжение питания непосредственно на выводы вентилятора, предварительно отключив их от схемы осушителя.

Осушитель воздуха не будет работать, если не установлен резервуар для воды (будет гореть красный индикатор). Чтобы заставить осушитель работать без установленного резервуара, нужно утопить клавишу датчика уровня воды и заклинить ее с помощью, например куска провода, как показано на фотографии.

Проверка работы вентилятора

При вращении лопастей вентилятора с недостаточной скоростью или остановкой охлаждающий теплообменник остынет до отрицательной температуры. Тогда блок управления отключит компрессор, и осушитель перестанет работать.


Вентилятор может плохо вращаться из-за недостаточной смазки подшипников вала двигателя или неисправности обмоток. Для проверки смазки достаточно провернут лопасти рукой. Лопасти должны после воздействия некоторое время продолжать вращаться. Если лопасти вращаются туго и после воздействия не продолжают вращаться, то нужно смазать подшипники через предусмотренные для этого отверстия в его корпусе.

Если такой возможности нет, то нужно будет разобрать двигатель, удалить старую застывшую смазку с помощью уайт-спирта и нанести свежую. Если неисправны обмотки, то двигатель придется заменить новым.


Вентилятор может не работать из-за неисправности кнопки переключения режима его работы или токоограничивающего резистора (сопротивления), показанного на фотографии. При нажатии на кнопку переключения скорости вращения лопастей вентилятора, она должна зафиксироваться в нажатом состоянии и скорость вращения лопастей должна увеличиться.

Если вентилятор работает при нажатой кнопке, а при отжатой лопасти не вращаются, то неисправен токоограничивающий резистор. Если кнопка не влияет на скорость, то она неисправна.

Как проверить работу компрессора

Если проверка показала, что сетевой шнур, датчик уровня воды, гиростат и вентилятор исправны, то осталось проверить работоспособность блока управления и компрессора.

Из этих двух узлов проще всего проверить компрессор, на этикетке которого написано, что он работает от переменного напряжения 220 В. Для проверки достаточно подать на его входные клеммы с помощью отдельного шнура с вилкой напряжение сети 220 В.


Чтобы получить доступ к клеммам нужно с компрессора снять защитную пластмассовую крышку, для чего вставить и надавить в находящееся в ней сверху отверстие жало плоской отвертки. Защелка отойдет, и крышка легко снимется.


К компрессору подключено три провода. Провод желто - зеленого цвета является заземляющим, а по черному и синему проводам подается питающее напряжение. Поэтому нужно снять разъемы с этих контактов и подать на них 220 В. Если с компрессором все в порядке, то он заработает и через пару минут охлаждающая зона теплообменника станет холодной. В случае если двигатель компрессора работает, а температура теплообменнике не изменяется, значит, имеет место утечка фреона.

Если компрессор неисправен, то придется обратиться в сервис. В домашних условиях без специального оборудования отремонтировать компрессор самостоятельно домашнему мастеру не по силам.

Проверка и ремонт блока управления

Подача питающего напряжения непосредственно на компрессор показала его исправность. Непроверенным остался только блок управления и очевидно, что осушитель не работает из-за его неисправности.

На фотоснимке показан Блок управления осушителя воздуха Kaut K20. Он выполняет функцию отключения компрессора в случае приближения температуры охлаждающей зоны теплообменника к нулю. Таким образом, исключается нарушение работы осушителя из-за образования снежной шубы на теплообменнике.


Для возможности поддержания заданной температуры охлаждающей зоны теплообменника между его ребер установлен терморезистор (термосопротивление), который на фотографии выделен, синим цветом. При изменении температуры величина его сопротивления изменяется. От терморезистора идут два провода, которые подключены с помощью разъемного соединения к Блоку управления.

На фотографии отображено показание мультиметра при измерении сопротивления терморезистора при температуре 20°С. Термосопротивление в ремонтируемом осушителе воздуха оказалось исправным.

Для проверки исправности терморезистора нужно отсоединить разъем с идущими от него проводами от блока управления и прикоснувшись щупами мультиметра к контактам снятого разъема измерять величину сопротивления. Она должна быть около 10 кОм. Если сопротивление равно нулю, то имеется замыкание в проводах. А если равно бесконечности, то либо провода в обрыве или неисправен терморезистор.

Следовательно, неисправен сам Блок управления (БУ). Для поиска неисправного элемента его надо снять. Сначала нужно отсоединить все разъемы с проводами от клемм БУ. Перед отсоединением разъемов не забудьте сфотографировать или зарисовать порядок их подключения.

Блок управления к основанию крепится с помощью четырех пластиковых стоек. Для освобождения его нужно пинцетом сдавить выступающие над печатной платой части стоек, как показано на фотографии.


Внешний осмотр качества паек и внешнего вида радиоэлементов не выявил отклонений от нормы. Прозвонка мультиметром диода, выпрямительного моста и сопротивлений показала их исправность.


Проверка резисторов и полупроводниковых приборов, установленных со стороны печатных проводников БУ, тоже не выявила неисправных деталей. Непроверенными остались только конденсаторы и микросхема, так как проверить их без выпаивания невозможно.


Для дальнейшего поиска неисправности БУ решил запитать ее от отдельного источника постоянного тока, подав на выводы «плюс» и «минус» выпрямительного моста питающее напряжение 24 В. Величина напряжения была выбрана исходя из напряжения питания реле, которое указано на его корпусе. Вместо терморезистора было подключено переменное сопротивление 15 кОм.


Ток потребления составил около 10 мА, что свидетельствовало об отсутствии короткого замыкания в схеме. При изменении величины сопротивления реле срабатывало, что говорило о работоспособности запитанной напряжением электрической части схемы БУ.

Стало очевидным, что в обрыве токоограничивающий конденсатор емкостью 0,68 мкФ. Вы его видите на фотографии.

Отказавший конденсатор был выпаян, а вместо него запаяны параллельно имевшихся под рукой два исправных емкостью 0,33 мкФ. При параллельном соединении конденсаторов полученная емкость равна сумме емкостей каждого из них. В результате получилось емкость 0,66 мкФ, что для замены отказавшего конденсатора вполне достаточно.

Блок управления без закрепления был подключен к электрической схеме. При включении осушитель воздуха он заработал. Осталось только надежно установить конденсаторы на печатную плату.


На печатной плате место для установки дополнительного конденсатора отсутствовало. Поэтому пришлось выпаять присоединенный параллельно конденсатору резистор и дополнительно просверлить в ней два отверстия, в которые и был установлен и запаян второй конденсатор.

Выпаянный резистор был припаян непосредственно к выводам одного из конденсаторов. Такая установка элементов гарантировала надежную работу.

Отремонтированная своими руками плата Блока управления осушителя воздуха, была установлена и закреплена на штатных стойках. Повторная проверка подтвердила исправную работу осушителя воздуха, через десять минут работы в лотке для сбора конденсата появилась вода.

Ремонт индикатора подключения к сети

Еще при первом подключении осушителя к бытовой сети было обнаружено, что верхний индикатор, который должен светиться при подключении вилки к розетке не светиться, хотя напряжение на него поступало, так как лопасти вентилятора вращались.


Индикатор представлял собой не разборный пластмассовый цилиндр с двумя клеммами. Крепился индикатор на лицевой панели с помощью защелок.


Для того чтобы добраться до источника света индикатора пришлось его пропилить по окружности с помощью ножовки по металлу и сломать в месте пропила.


Оказалось, что внутри находиться неоновая лампочка, включенная последовательно с токоограничивающим резистором. Проверка резистора показала его исправность. Следовательно, индикатор не работал из-за неисправной лампочки.


Исправная неоновая лампочка зеленого цвета свечения с резистором была извлечена из выключателя от Пилота с разломанной клавишей. Такие лампочки широко используются в качестве индикаторов во многих бытовых электроприборах, например в электрочайнике, утюге.


Исправная лампочка была припаяна к выводам корпуса индикатора и проверена. Отломанная пластмассовая трубка индикатора была приклеена на место клеем Момент и дополнительно пластмасса была оплавлена с помощью паяльника.

После установки индикатора на место и сборки корпуса ремонт осушителя воздуха своими руками был благополучно закончен.



erkas.ru - Обустройство лодки. Резиновые и пластиковые. Моторы для лодок